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Abstract
We present a compiler intermediate representation (IR) that
allows dynamic speculative optimizations for high-level lan-
guages. The IR is graph-based and contains nodes fixed to
control flow as well as floating nodes. Side-effecting nodes
include a framestate that maps values back to the original
program. Guard nodes dynamically check assumptions and,
on failure, deoptimize to the interpreter that continues ex-
ecution. Guards implicitly use the framestate and program
position of the last side-effecting node. Therefore, they can
be represented as freely floating nodes in the IR. Exception
edges are modeled as explicit control flow and are subject
to full optimization. We use profiling and deoptimization to
speculatively reduce the number of such edges. The IR is
the core of a just-in-time compiler that is integrated with the
Java HotSpot VM. We evaluate the design decisions of the
IR using major Java benchmark suites.

Categories and Subject Descriptors D.3.4 [Programming
Languages]: Processors—Compilers, Optimization

General Terms Algorithms, Languages, Performance

Keywords Java, virtual machine, just-in-time compilation,
intermediate representation, speculative optimization

1. Introduction
Speculative optimizations in a just-in-time compiler rely on
profiling feedback that characterizes program behavior. The
compiler can focus on the most likely paths taken through
the program and cut off cold branches that are highly un-
likely to be taken. This reduces code size and opens addi-
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tional optimization opportunities, because the cold branch
and its influence on program state need not be taken into
account when compiling a method. In high level languages
such as Java, a single operation can include an implicit
control-flow split. For example, a field access includes a
null check on the receiver that can throw an exception. This
control-flow path is not visible in the original source pro-
gram, but the compiler still has to handle it. In this context,
the speculative reduction of those control-flow paths is im-
portant. Dynamic languages can profit even more from this
reduction, because an operation in such a language typically
has a more complex control-flow structure.

When one of the cold branches is still taken, program ex-
ecution must continue in the interpreter. This mechanism to
jump from the optimized machine code back to the inter-
preter is called deoptimization [17]. It requires bookkeeping
in the compiled code that allows the reconstruction of the
interpreter state at deoptimization points. This state includes
the values of local variables and the operand stack. Due to
escape analysis, some of those values may reference virtual
objects that need to be allocated during deoptimization.

The design of an IR largely influences whether a compiler
writer can express optimizations in a simple way [6]. In the
context of speculative optimizations, it also decides whether
such optimizations are possible at all and how much addi-
tional footprint is required for enabling deoptimization. This
paper contributes the description and evaluation of a novel
IR with the following properties:

• Speculative optimizations using deoptimization points
which map optimized program state back to interpreter
state.

• Insertion, movement, and coalescing of deoptimization
points without any constraints.

• Explicit representation of exception edges as normal con-
trol flow and omits them speculatively based on profiling
feedback.
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Figure 1. System overview.

2. System Overview
Our IR is part of Graal OpenJDK project [23] and its
Graal Virtual Machine (VM). The Graal VM is a modi-
fication of the Java HotSpot VM. The Java HotSpot VM
uses mixed-mode execution: all methods are initially inter-
preted, and frequently executed methods are scheduled for
just-in-time (JIT) compilation. Thus execution starts in the
interpreter, which is slow but has low startup costs. It also
generates profiling information during interpretation. When
the VM decides that a method should be compiled, it makes a
request to the compiler, which can optimize Java bytecodes
better with the help of the profiling information. Figure 1
shows a schematic overview of this system.

The Java HotSpot VM has two JIT compilers: the client
compiler and the server compiler. The client compiler [20]
aims at fast compilation speed, while the server compiler [24]
aims at better optimization at the expense of slower compi-
lation speed. Both use speculative optimizations and deop-
timization. In contrast to our IR, however, their IR is not
centered around the principle of speculative optimizations;
deoptimization is an add-on feature expressed by a dedi-
cated instruction, not a first-class concept as described in
this paper.

The Graal compiler can be used to replace the standard
compilers of the Java HotSpot VM. It is written in Java and
aims to produce highly optimized code through extensive
use of speculative optimizations. An optimization is specu-
lative when the compiler makes an assumption that it cannot
guarantee during compilation. Instead, it requires the run-
time system to monitor the assumption and discard the ma-
chine code when the assumption no longer holds. For ex-
ample, the compiler can replace a virtual method call with
a static call and then inline a method if there is currently
only one implementation of the method available. If later
class loading adds another implementation, the assumption
no longer holds and the code is deoptimized.

In order to do so, the runtime uses deoptimization infor-
mation generated by the compiler to reconstruct the state of
the interpreter (i.e., the state of the virtual machine) from the
state of the physical machine. In the Java VM, this state con-
sists of all local variables and operand stack slots. In the con-
text of escape analysis, where allocations of method-local
objects are eliminated, the deoptimization information also
contains the mapping necessary to reconstruct such objects
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Figure 2. Example graph with control-flow and data-flow
edges.

on the heap. Figure 1 shows that this data is directly associ-
ated with the machine code of a compiled method.

3. Intermediate Representation
Our IR is based on a directed graph structure. Each node
produces at most one value and it is in static single assign-
ment (SSA) form [8]. To represent data flow, a node has
input edges (also called use-def edges) pointing “upwards”
to the nodes that produce its operands. To represent control
flow, a node has successor edges pointing “downwards” to
its different possible successors. Note that the two kinds of
edges point in opposite directions. In the example in Fig-
ure 2, the If node has one input edge pointing “upwards”
for the condition and two successor edges pointing “down-
wards” for the true and false branches. This mirrors the edge
direction usually found in a data-flow graph and a control-
flow graph, respectively. In summary, the IR graph is a su-
perposition of two directed graphs: the data-flow graph and
the control-flow graph.

The IR automatically maintains reverse edges for all
node connections. Therefore usage edges (also called def-
use edges) and predecessor edges can also be used to tra-
verse the graph. Unlike the direct edges, these reverse edges
are implicitly maintained and not ordered, which means that
they can only be observed as an unordered set of usages or
predecessors.

Each block of the control-flow graph begins with a Begin
node. Two or more lines of control flow can merge at a
Merge node, which is a subclass of the Begin node. These
Merge nodes need to know the order of their predecessors,
so that an SSA Phi node can select the correct input value
for each of the merge predecessors. As predecessor edges
are not ordered, Merge nodes are connected to their prede-
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Figure 3. Example graph for a loop.

cessors using input edges pointing to End nodes. These End
nodes are at the end of the control flow of the merge’s pre-
decessors. The Phi nodes are attached to their Merge node
through a special input edge. This structure is illustrated in
Figure 2. The filled arrows show the control flow, the empty
arrows show the data flow.

For simplicity, the IR only represents reducible loops.
Methods containing irreducible loops are not compiled
and are left for the interpreter to execute. In Java byte-
codes produced from a Java source program without ob-
fuscation, there can never be any method with irreducible
loops. The IR models loops explicitly: the loop header is a
LoopBegin node. The back-edges of a loop are represented
with LoopEnd nodes, which are attached to their LoopBegin
through an input edge. Since the LoopBegin node merges the
control flow of the loop pre-header and backward edges, Phi
nodes can be attached to LoopBegin nodes. This structure is
illustrated in Figure 3.

For the transparent management of LoopBegin nodes
merging control flow, LoopBegin node is a subclass of
Merge node and LoopEnd node is a subclass of End node.

3.1 Fixed and Floating Nodes
Nodes are not necessarily fixed to a specific point in the
control flow. The control-flow splits and merges provide a
backbone around which most other nodes are floating. For
example, the Add node in Figure 2 is floating. These float-
ing nodes are only constrained by their data-flow edges and
through additional dependencies such as memory dependen-
cies. The constraints maintain the program semantics but al-
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C lassA . a = 2 ;
i = ClassA . b ;
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}

Figure 4. FrameState nodes. The two local variable slots
are expressed as inputs to the FrameState nodes.

low more freedom of movement for operations. When a node
needs to express a dependency to a specific branch, it can
have an input edge pointing to a specific Begin node.

As explained by Click [5], this representation simplifies
a number of optimizations by removing the burden of main-
taining a valid schedule or performing code motion. When
emitting code, the IR is fully scheduled by assigning each
node to a block in the control-flow graph and by ordering the
nodes inside each block. During scheduling, simple heuris-
tics are used to apply some code motion optimization such
as hoisting code out of loops.

4. Deoptimization
4.1 Framestates
We enable speculative optimization through the use of deop-
timization, which transfers execution from optimized code
to the interpreter. To be able to do this, we need to know

• where we want to continue interpreting the code, and
• how to reconstruct the VM state at the continuation point

from the physical machine state of the optimized code.

To know where we want to continue, we keep a reference
to the method and a bytecode index (bci). For the VM state,
we keep a mapping of the local variables and operand stack
slots to their values in the IR. When emitting deoptimization
information we can then map them to their physical location.

In our IR we keep track of this data for nodes that can
have side effects on the global state of the virtual machine
such as memory writes, method invocations and monitor
acquires or releases. We call those nodes state split nodes.
For these nodes, we keep the information about the state the
virtual machine would be in after they execute.

The mapping from the VM state to IR nodes is not part
of the state split nodes themselves, but it is expressed as
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Figure 5. Framestates and guards. The LoadField node is
guarded by a null check. FrameState nodes are kept for the
state after two StoreField nodes.

FrameState nodes. These nodes contain the method and bci
of the continuation point and they have inputs for the lo-
cal variables and operand stack slots. State splits have a
FrameState node as an input that describes the VM state af-
ter they have been executed. An example of this is shown in
Figure 4: In this example the two stores to static fields have
side effects and therefore need references to FrameState
nodes. These nodes describe the VM state after they have
been executed. In contrast, the load of the static field does
not have side effects1, so it does not need a FrameState.

Before emitting code we need to associate the deopti-
mization information with the nodes that can trigger deop-
timization. To do so, we use the deoptimization information
of the last dominating state split node. This means that all of
the instructions between two state split nodes deoptimize to
the same point, which corresponds to the deoptimization in-
formation of the first state split node. Some instructions that
have already been executed by the compiled version are thus
re-executed by the interpreter after deoptimization. This re-
execution is sound because none of the re-executed instruc-
tions modify the global state (otherwise they would be state
split nodes themselves).

For example, the Guard node of Figure 5 performs a
null check before the object is accessed. In the unexpected
case that the object is indeed null, it triggers deoptimization,

1 we assume ClassA has already been initialized.
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Figure 6. Example where a Merge node requires a
FrameState node.

so it needs deoptimization information. In this example,
we select the deoptimization information contained in the
FrameState bci=18 node attached to the second StoreField
node (StoreField b).

Using the last dominating state split requires keeping the
deoptimization data at a merge point, if any of the merging
branches contains a state split node (as illustrated in Fig-
ure 6). In that case, any deoptimization triggered after the
Merge node deoptimizes to this Merge node. Otherwise, a
deoptimization triggered by a node after the Merge node
could deoptimize to the dominator of the Merge node and
thus could re-execute the side effects of the branch contain-
ing the state split node.

This model gives us a complete mapping, so that, once the
graph is scheduled, any node which may cause deoptimiza-
tion can be associated with deoptimization information.

4.1.1 Hierarchical Framestates
A FrameState node can express the VM state of exactly
one method activation. Method inlining, however, introduces
multiple nested activations into one IR instance, so that the
deoptimization information consists of multiple nested VM
states. This is encoded in the IR by letting a FrameState
node reference another FrameState node that describes the
surrounding activation. This reference to the surrounding
activation is called the outer FrameState. An example of
such an outer FrameState is shown in Figure 7.

It is important to note that multiple inner FrameStates
can refer to the same outer FrameState, which leads to trees
of FrameStates in the IR.

4.1.2 Virtual Objects
Some advanced optimizations require even more informa-
tion for mapping to the VM state. For example, escape anal-
ysis [3] leads to scalar replacements of objects, which means
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Figure 7. Nested FrameState nodes when compiling x()
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Figure 8. Representation of virtual objects and their current
state via FrameState nodes.

that objects that would be allocated according to source level
semantics are not actually allocated. In this case the mapping
to VM state includes information about which object alloca-
tions were eliminated and what the current contents of these
objects is. With this information, the objects can be recon-
structed during deoptimization as explained by Kotzmann
and Mössenböck [19].

Figure 8 shows an example of how virtual objects are
expressed in the IR. Each virtual object is represented as
a VirtualObject node, and every local variable or stack
slot that refers to the eliminated object points to this node.
The actual contents of the virtual object are expressed as
VirtualObjectState nodes, which are added to the leaf
FrameState nodes. The reason for this split representation is
that multiple inner FrameStates can refer to the same outer
FrameState, and a virtual object that is part of the outer lo-
cal variables or stack slots can have different field values for
inner FrameStates.

4.2 Guards
The Graal IR uses Guard nodes to check the assumptions
taken for speculative optimizations. They take as input a

boolean condition that needs to be checked. If the check
fails, a deoptimization is triggered. Any node that depends
on the assumption checked by a guard takes the guard as
an input, thereby ensuring that the node and this guard are
always ordered correctly during scheduling.

For example, we can decide to inline a method at a virtual
call site based on profiling data showing that only one of
the possible target methods was ever called. We then need
to check this assumption at run time by inserting a Guard
node which checks the type of the receiver. The entry of
the inlined call takes this guard as an input so that the
assumption is checked before entering the inlined code.

Once a guard is associated with deoptimization informa-
tion, which specifies where it should deoptimize to and in
which state, it becomes difficult to move it without breaking
the ordering of side effects. Thanks to the complete map-
ping provided by FrameState nodes, the Guard nodes do not
need to be associated with specific deoptimization informa-
tion before code emission and can thus be moved freely in
the IR.

Guard nodes are floating nodes which are constrained by
their usages, by their input condition, and by an additional
input which points to a Begin node. This additional input
ensures that the Guard node stays in the correct branch.
We refer to this as a Guard node that is anchored to a
branch. For example, the LoadField node in Figure 5 takes
the assumption that object2 is not null using a Guard node.
This guard should only be checked in the correct branch of
the if statement because the condition could be related to
object2 being null or not. If the guard was to be scheduled
above the If node, the program would still execute correctly,
but it could deoptimize too often and deteriorate program
performance.

When Guard nodes are inserted, they are anchored to the
furthest dominator of the node that they need to guard which
still post-dominates this node. This is the first dominating
Begin node whose predecessor is a control-split. This en-
sures that the guard is tested only if it is needed but also
that guards cluster below Begin nodes. This is important be-
cause Guard nodes, like most floating nodes, are subject to
global value numbering so multiple Guard nodes with the
same condition and anchor are coalesced automatically.

After their insertion, we can still change the node a guard
is anchored to. For example, we can replace the two Guard
nodes in Figure 9 with one Guard node anchored at a dif-
ferent position, without worrying about any ordering with
respect to other guards or nodes with side effects.

5. Exception Handling
When compiling a language that has an exception mecha-
nism, exception edges have to be added to control-flow graph
to account for the control-flow transitions that can happen
when an exception is raised. In a language such as Java, a
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Figure 9. Hoisting and coalescing two Guard nodes above
an If node.

significant number of instructions may throw an exception
and, as a result, a large number of exception edges is needed.

In our IR, we can take the optimistic assumption that
exceptions are not thrown and thus completely eliminate
most of the exception edges. This simplifies further analyses
and optimizations by reducing the size and the complexity of
the IR graph. Also, if an exception handler is not reached by
any exception edge then this exception handler does not need
to be parsed and compiled, which improves compilation time
and reduce the size of the compiled code.

When an exception is thrown at a position where the com-
piled code does not expect it, the runtime uses deoptimiza-
tion to go back to the interpreter. The interpreter then re-
executes the code and throws the exception. To implement
this in our IR, we use Guard nodes checking the assumption
that no exception needs to be thrown. Any further analysis
can make the assumption without taking any special care.

For example, when an operation needs to check that one
of its operands is not null, we insert a null check guard.
When a null value is encountered, deoptimization is trig-
gered and the interpreter throws the NullPointerException

Since deoptimization is costly, we need to handle excep-
tions efficiently in programs that use exception handling as
normal control flow. If an exception is thrown frequently for
a certain node, we insert explicit exception checks. An ex-
plicit check can simply be the insertion of the runtime check
using an If node followed by an explicit exception edge in
the case the check fails. On this edge the exception object
can be a pre-allocated object, eliminating the allocation cost.

In our IR, two different nodes are used for method invoca-
tion: one (Invoke node) that does not expect an exception to
be raised and another (InvokeWithException node) that acts
as a control-flow split between normal control flow and ex-
ceptional control flow. On its exception edge, an exception-
aware invoke is followed by a special ExceptionObject node
that represents the exception raised during the method call.
This structure can be seen in Figure 10.

When the runtime is unwinding the stack because of
an exception, it directly maps the program counter of the

...

Invoke foo

...

catch handler

InvokeWithException bar

ExceptionObject

If

Unwind

instanceof MyException

. . .
t r y {

f oo ( ) ;
bar ( ) ;

} catch ( MyException s ) {
// ca tch hand l e r

}
. . .

Figure 10. Exception edges handling with invoke nodes and
a simple exception dispatch chain.

invoke throwing the exception to the program counter of the
exception branch. If such a mapping does not exist, it means
the invoke did not have an exception edge and a mapping
to the proper deoptimization information allows the runtime
to handle the exception in the interpreter. In this case the
exception has already been thrown and is in a “pending”
state, so that the interpreter restarts execution at the bytecode
of the invoke and immediately handles the exception.

The explicit exception edges lead to a chain of If nodes
that check the type of the exception object to find the right
exception handler. At the end of this chain, if the type of the
exception does not match any of the exception handlers, con-
trol flow goes to an Unwind node that forwards the exception
to the next method on the call stack. A simple example is il-
lustrated in Figure 10.

Explicitly modeling the exception handling chains for
points where exceptions actually happen allows us to ap-
ply the same optimizations to the exception handling code
than to the rest of the code. For example, if the exact type of
an exception object is discovered through inlining or other
transformations, the exception handling chain can be opti-
mized to jump directly to the correct handler.

Using Guard nodes to check for exceptions gives us the
ability to re-order those checks without constraints since it
is a property of our Guard nodes.

6. Evaluation
6.1 Deoptimization
We maintain deoptimization information at state splits rather
than at instructions that may cause deoptimization. Deopti-
mization information adds a large number of edges and con-
straints to the IR graph. We measure the number of state
split nodes and the number of nodes that need deoptimiza-



tion information after all optimizations have been applied.
We found that, in the DaCapo benchmarks, there are on av-
erage 29% more nodes that need deoptimization information
than state split nodes. This shows that our model does not in-
crease the number of FrameState nodes that are necessary,
but actually reduces it.

We also measure the number of distinct FrameState
nodes that are actually assigned to nodes which need de-
optimization information. The results show that on average
only 32% of the FrameStates are actually assigned in the
DaCapo benchmarks.

To evaluate the importance of FrameState nodes, we
measure the number of inputs they take. They have on av-
erage 10.5 inputs which means that they add a lot of edges
to the graph. Those edges become constraints for schedul-
ing and need to be processed during data-flow analysis. This
means that reducing the number of FrameState nodes helps
the compiler.

When inserting Guard nodes, we measure how many are
actually created and how many are just immediately coa-
lesced with an existing one. On average, 49.7% of the Guard
nodes in the DaCapo benchmarks are actually created. This
shows that even before any other analysis half of the runtime
checks have already been eliminated thanks to automatic co-
alescing and to the careful selection of the anchoring nodes.

6.2 Exception Handling
To evaluate the impact of our design for exception handling,
we measure, during parsing, the number of places where ex-
ception edges are needed according to the JVM specifica-
tions [21] and the number of edges that we actually insert.
The results are shown in Figure 11 and Figure 12. These
results indicate that very few exception edges are actually
needed and confirm the motivation of our design.

The breakdown per type of exception edge in Figure 11
also shows that 40.0% of the exception edges come from in-
vokes, which shows the importance of being able to exclude
those edges. On the other hand, throw statements (also in
Figure 11) always throw an exception, so there is no interest
in eliminating them. A number of explicit exception edges
are also necessary for bounds checks. These mainly come
from the eclipse benchmark which uses bounds checks ex-
ceptions in some parts of its logic.

To assert the importance of eliminating exception edges,
we measure the number of nodes just after parsing. In the
DaCapo benchmarks, there are 0.73 potential exception
edges per nodes. This means that if we included all ex-
ception edges the control-flow graph would be extremely
fragmented. This would have an adverse effect on the qual-
ity of further optimizations. It would also increase the code
size.

We also measure the number of exception handlers that
are present in methods parsed by the compiler and the num-
ber of these handlers that are actually parsed and included
in the compiled code. The results can be seen in Figure 12.

Potential Explicit
Bounds check 166,770 498 (0.30%)

Invoke 1,296,646 14,454 (1.11%)
Null check 1,525,061 686 (0.04%)

Throw 2,241 2,241 (100.00%)
Checkcast 99,192 0 (0.00%)
Div/Rem 6,082 0 (0.00%)

Allocation 110,078 0 (0.00%)
Monitor null check 33,631 0 (0.00%)

Total 3,239,701 17,879 (0.55%)

Figure 11. Number of potential exception edges required
by Java specification vs. number of explicit exception edges
actually inserted in the IR aggregated for all DaCapo bench-
marks. Breakdown by kind of exception edge.

Exception edges Exception handlers
Benchmark Potential Explicit Potential Parsed

avrora 147,020 629 (0.43%) 952 39 (4.10%)
batik 211,087 745 (0.35%) 1,507 28 (1.86%)

eclipse 519,079 1,958 (0.38%) 10,029 292 (2.91%)
fop 208,616 776 (0.37%) 1,111 21 (1.89%)
h2 181,582 1,022 (0.56%) 1,831 80 (4.37%)

jython 257,057 2,197 (0.85%) 2,346 50 (2.13%)
luindex 143,630 611 (0.43%) 960 21 (2.19%)

lusearch 136,506 753 (0.55%) 945 25 (2.65%)
pmd 214,393 3,354 (1.56%) 1,629 136 (8.35%)

sunflow 147,146 675 (0.46%) 685 23 (3.36%)
tomcat 292,531 1,175 (0.40%) 4,296 113 (2.63%)

tradebeans 238,901 1,114 (0.47%) 2,826 99 (3.50%)
tradesoap 368,987 2,220 (0.60%) 7,253 191 (2.63%)

xalan 173,166 650 (0.38%) 1,949 24 (1.23%)
Total 3,239,701 17,879 (0.55%) 38,319 1,142 (2.98%)

Figure 12. Number of exception edges and exception han-
dlers found in the input code vs. the number kept for compi-
lation.

On average, only 2.98% of the handlers are parsed. This is a
significant reduction which further simplifies the IR of meth-
ods containing exception handlers. This has also the positive
effect of reducing the size of the emitted code.

6.3 Performance
We measure the performance of the Graal compiler (at re-
vision 5a9d68c3a7d7 [1]) and compared it to the perfor-
mance of the Java HotSpot client and server compilers us-
ing HotSpot 25.0-b43 [2]. The benchmarks are run on a
Xeon E5-2690 running Ubuntu 12.04. We measure peak
performance for DaCapo 9.12 [9], SPECjvm2008 [28] and
SPECjbb2005 [27]. The results in Figure 13 show that the
Graal compiler and its IR can run a variety of benchmarks
and performs well compared to industry-leading compilers.
These three compilers do not implement the same optimiza-
tions. For example, our compiler does not implement ad-
vanced loop transformations or array bounds check elimi-
nation which are implemented in the server compiler. The
server compiler also implements a wider set of compiler in-
trinsics than our compiler.
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Figure 13. Performance of the Java HotSpot VM using
Graal and client or server compiler for SPECjvm2008,
SPECjbb2005 and DaCapo. Operations per minute (higher
is better), normalized to Graal’s score.

7. Future Work
Currently, we assign deoptimization information to deop-
timization instruction just before code emission. Thus af-
ter this point no more optimization is performed and the
scheduling is fixed. It would be interesting to do this as-
signment earlier since the evaluation shows that only a
small number of deoptimization information is assigned. We
could then eliminate some code that became dead because it
was only referenced from unused FrameState nodes. Since
FrameState nodes are eliminated, some constraints are re-
moved from the graph, which could also lead to a better
schedule. To do this, only the deoptimizing instructions need
to be fixed to the control flow so that they can be assigned
deoptimization information.

This framework for speculative optimization can be used
for many purposes beyond exception handling. We could use
it for example for aliasing checks to implement better scalar
replacement.

8. Related Work
8.1 Intermediate Representation
The Graal IR is close to the graph IR presented by Click
[6, 7] where nodes are not necessarily fixed to a specific
point in the control flow. This kind of IR retains ideas from
the Program Dependence Graph (PDG) of Ferrante et al.
[13] where only the dependencies necessary to express the
program semantics are kept.

A description of the design and implementation of our IR
in the Graal compiler is given by the authors in [12].

8.2 Deoptimization
Deoptimization has first been proposed for the implemen-
tation of the SELF language [17]. It is implemented in the
HotSpot VM and used in both the client [20] and server [24]
compilers. In HotSpot, deoptimization transfers the execu-
tion to the interpreter. In the Jikes RVM, there is no inter-
preter, so deoptimization is done by transferring the exe-
cution to a different version of the compiled code. This is
called On-Stack Replacement (OSR) and was proposed for
the Jikes RVM by Fink and Qian [14]. In the HotSpot VM
terminology, the OSR name is only used for the transfer of
execution from the interpreter to compiled code [20]. The
RPython tracing JIT [25] also support guards and handles
them in a similar fashion to the HotSpot VM.

In these implementations, instructions that can trigger
deoptimization maintain their own deoptimization informa-
tion throughout the complete compilation process. This adds
strong ordering constraints for these instructions. This diffi-
culty is well illustrated by Odaira and Hiraki [22] and Sun-
daresan et al. [30] who want to move instructions that may
throw exceptions. Using our IR, we can move and insert
Guard nodes without having to employ dynamic code patch-
ing or other techniques to overcome this re-ordering.

The Crankshaft compiler of the JavaScript v8 VM [15]
uses a model similar to ours for handling deoptimization.
While its IR does not have floating nodes, JavaScript-
specific nodes that can cause deoptimization are manually
moved during the compilation process. We did not find pub-
lished work about the Crankshaft compiler, but the source
code is available [16].

Binary translator such as Transmeta’s Code Morphing
software (CMS) [10] also have support for speculative opti-
mizations. In CMS this is done using a rollback mechanism
which triggers when an assumption is not verified.

Similar goals to deoptimization can be achieved via code
duplication and modification of control flow. A predicate can
be checked to dispatch the code between one version that
makes an assumption and another that does not. This has
been done for example by Sias et al. [26]. This method can
make the global control very complex if a large number of
assumptions need to be taken. Thus it would be impractical
for assumptions about exceptions not occurring. In the con-
text of nested loops, this issue has been studied by Djoudi
et al. [11] but their method can not be applied more gener-
ally.

Another technique for speculative optimization has been
proposed by Kelsey et al. [18]. In their model targets sequen-
tial code, where blocks of speculatively optimized code and
safe code run in parallel. The execution of the safe code is
used to verify the execution of the speculatively optimized
code. The speedup comes from the fact that the verification
of block can start as soon as the speculatively optimized ex-
ecution of the previous block is finished. This allows overlap
in the execution of the safe code. Even if reasonable speedup



is achieved, this technique only works for a sequential pro-
gram and requires the developer to annotate the source code.
Also this technique only work when you can allocate multi-
ple cores to run one sequential program.

8.3 Exception Handling
To mitigate the high number of exception edges, some com-
pilers such as Jikes RVM [4], and HotSpot’s client com-
piler [20], use a factored control-flow graph where excep-
tion edges are implicit and summarized for each control-flow
block. But this still requires the compiler’s analyses to take
into account the instructions that may throw an exception
while iterating over instructions in a block for an optimiza-
tion. Our implementation using guards, simply makes the
assumption that exceptions do not happen and can then op-
timize as if this assumption was verified.

This follows the general principle that if some code inside
a method has never been executed during profiling, it can
be speculatively left out during compilation. This has been
studied for general control flow by Whaley [31].

The HotSpot server compiler [24] also uses deoptimiza-
tion to handle unlikely exceptions. It also uses profiling in-
formation to include explicit exception edges when neces-
sary. But it can not exclude exception edges for invokes. Our
evaluation has shown that those account for a large num-
ber of the exception edges. Also, even if the invokes have
an exception edge, the runtime has no direct mapping of the
program counter of the invoke to the program counter of the
exception edge.

An other approach to reducing the impact of exceptions is
shown by Su and Lipasti [29]. They compile regions of code
under the assumption that exceptions are never triggered,
then during execution, this assumption is checked using spe-
cial hardware support. If this assumption is invalidated, the
changes that happened in the failing region are rolled back
using hardware support. The region is then recompiled with-
out assumptions and re-executed. This approach is similar to
our use of deoptimization in that no time is spent compiling
exception handlers. Our technique has a small runtime over-
head that does not exist when assumptions are monitored
by hardware. But the requirement of hardware support can
be prohibitive since it requires features that do not exist in
common platforms. Also adding a new kind of assumption
could require new hardware support which is costly while in
our model, a new kind of assumption can be introduced very
easily.

9. Conclusions
Our IR is suited for dynamic speculative optimization thanks
to its deoptimization framework. It allows the compiler to
easily take assumptions at any time and then transparently
optimize the code using these assumptions. One key feature
and contribution of our framework is its ability to re-order
and move the assumption checks freely. This is important to

simplify the implementation of optimizations dealing with
code motion.

The power of this feature becomes visible in our imple-
mentation of exception handling in which we can overcome
the precise semantics of the Java exception. We can move
the checks for exception and we take advantage of this to
remove redundant checks by coalescing them.

This framework can now be used as the basis for further
speculative optimizations in a dynamic compiler environ-
ment. We believe that it is simple and powerful enough to
be able to concentrate on the speculative aspect of optimiza-
tions in a dynamic compiler rather than how to accommodate
any kind of constraints imposed in other frameworks.
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