Graal IR: An Extensible Declarative Intermediate Representation

Gilles Duboscq™
Doug Simon!

*Institute for System Software, Johannes Kepler University Linz, Austria

duboscq@ssw.jku.at
doug.simon@oracle.com

Abstract

We present an intermediate representation (IR) for a Java
Jjust in time (JIT) compiler written in Java. It is a graph-based
IR that models both control-flow and data-flow dependencies
between nodes. We show the framework in which we devel-
oped our IR. Much care has been taken to allow the pro-
grammer to focus on compiler optimization rather than IR
bookkeeping. Edges between nodes are declared concisely
using Java annotations, and common properties and func-
tions on nodes are communicated to the framework by im-
plementing interfaces. Building upon these declarations, the
graph framework automatically implements a set of useful
primitives that the programmer can use to implement opti-
mizations.

Categories and Subject Descriptors D.3.4 [Programming
Languages]: Processors—Compilers, Optimization

General Terms Algorithms, Languages, Performance

Keywords Java, compilation, intermediate representation

1. Introduction

The intermediate representation (IR) is one of the central
building blocks of a compiler and significantly impacts the
design of the compiler. The way the IR is structured and pre-
sented to the programmer influences the way in which the
different IR transformation phases of the compiler are writ-
ten. Some optimization phases can be inherently complex
and difficult to implement. The IR framework upon which
they are built should be as simple and easy to use as possible
so that the focus can stay on the optimizations.

The design of this framework is not only important for the
implementation of the compiler, but also for its maintenance.

Reprinted from APPLC *13, [Unknown Proceedings], February 23, 2013, Shenzhen,
China, pp. 1-9.

Lukas Stadler™
Christian WimmerT

stadler@ssw.jku.at
christian.wimmer@oracle.com

Thomas Wijrthinger]L
Hanspeter Mossenbock ™

JrOracle Labs

thomas.wuerthinger@oracle.com
moessenboeck@ssw.uni-linz.ac.at

Developers can understand the implementation of a complex
optimization faster if the underlying IR framework does not
get in their way.

We developed an IR as part of Graal OpenJDK project [11]
and its Graal Virtual Machine (VM). The Graal VM is a
modification of the Java HotSpot VM which has two JIT
compilers: the client compiler [10] and the server com-
piler [12]. The client compiler aims at fast compilation
speed, while the server compiler aims at better optimization
at the expense of slower compilation speed. In the Graal VM,
a third compiler is added: the Graal compiler, which uses our
new IR. It is written in Java and aims to produce highly op-
timized code. The starting point of the Graal compiler was
the design of a new IR for a derivative of the C1X [13] com-
piler, which uses an IR similar to that of the HotSpot client
compiler. The new design simplifies the implementation of
standard compiler optimizations as well as aggressive spec-
ulative optimizations. An additional goal is to make the IR
and the associated infrastructure as easy to use as possible
so that compiler developers can focus on implementing new
optimizations. We also believe that a clear and easy to use
model for the IR can improve the overall maintainability of
the compiler.

2. Declarative Intermediate Representation
2.1 Data Flow

The Graal IR is based on a directed graph structure. Each
node produces at most one value. It is in static single assign-
ment (SSA) form [6]. Node types are specified in a declar-
ative way through class definitions. All node classes inherit
from a base Node class. The operation and value represented
by a node is defined by its type. The example in Listing 1
defines an AddNode type used to represent additions. Edges
to other nodes are declared using fields. In this case there are
two edges pointing to the operands.

To represent data flow, a node has input edges (also called
use-def edges) pointing “upwards” to the nodes that produce
its operands. Data flow edges are annotated with the @Input
annotation. The AddNode type in Listing 1 has two input
edges: left and right. For nodes with a variable number

class AddNode extends Node {
@Input Node left;
@Input Node right;

}

class SwitchNode extends Node {
@Input Node test;
@Successor NodeSuccessorList cases;

}

Listing 1. Definition of binary add node class.

of input edges, the collection class NodeInputList provides
a list of inputs that can grow. For example, the declaration of
the PhiNode in Listing 2 uses a NodeInputList for the dif-
ferent values merged by a SSA phi node. Inputs are ordered
in an NodeInputList, which is important for a phi node.

class PhiNode extends Node {
@Input NodeInputList values;
@Input MergeNode merge;

}

Listing 2. Definition of a phi node class using a
NodeInputList for the values it merges.

A graphical representation of some node instances is
shown in Figure 1. The black hollow arrow heads represent
data-flow edges and point towards the input node.

left right merge values[0]

® ™ 4

usages usages

values[1]

Figure 1. Nodes and data flow edges.

2.2 Control Flow

To represent control flow, a node has successor edges point-
ing “downwards” to its different possible successors. Con-
trol flow edges are annotated with the @Successor annota-
tion. The IfNode type in Listing 3 has two successor edges:
trueSuccessor and falseSuccessor. Like for data flow, a
field of type NodeSuccessorList is used when the number
of successors can vary. For example, the declaration of the
SwitchNode in Listing 4 uses a NodeSuccessorList for the
successors corresponding to the different cases.

class IfNode extends Node {
@Input BooleanNode condition;
@Successor BeginNode trueSuccessor;
@Successor BeginNode falseSuccessor;

}

Listing 3. Definition of an if node class using eInput and
@Successor annotations.

Each block of the control-flow graph begins with a Be-
gin node. Two or more lines of control flow can merge at a
Merge node, which is a subclass of the Begin node. These

Listing 4. Definition of a switch node class using a
NodeSuccessorList for its successors.

Merge nodes need to know the order of their control flow
predecessors, so that an SSA phi node can select the correct
input value for each of the merge predecessors. As prede-
cessor edges are not ordered, Merge nodes are connected to
their predecessors using input edges pointing to End nodes.
These End nodes are at the end of the control flow of the
merge’s predecessors. The Phi nodes are attached to their
Merge node through a special input edge. This structure is il-
lustrated in Figure 2. The red filled arrows represent control-
flow edges and point towards the successor nodes.

cond

* ﬂ if (cond) {

result = valuel + value2;

} else {

result = value2;

}

return result;

@
(=]
=]

v

valuel value2

A

Phi

i

2/
3
>

III

el
o|*—

t

[t
S
=}

Figure 2. Example graph with control-flow and data-flow
edges.

For simplicity, the IR only represents reducible loops.
Common Java compilers that translate source code to byte-
code never create irreducible loops. The IR models loops
explicitly: the loop header is a LoopBegin node. This is the
only entry point into the loop body. The back-edges of a loop
are represented with LoopEnd nodes, which are attached to
their LoopBegin through an input edge. Since the LoopBe-
gin node merges the control flow of the loop pre-header and
back-edges, Phi nodes can be attached to LoopBegin nodes.
This structure is illustrated in Figure 3 with a simple for
loop.

Since LoopBegin nodes merge control flow, LoopBegin
node is a subclass of Merge node and LoopEnd node is a
subclass of End node.

As seen with these nodes, extensibility is achieved using
inheritance: LoopBegin nodes build upon the features of

Merge nodes. This is particularly useful in this case because
it simplifies the implementation of phi nodes. For example,
in Listing 5 we can see that the interface used to relate phi
nodes and merge nodes works in the same way whether it is
a phi of a loop or of a normal merge.

class PhiNode extends Node {

public MergeNode merge()
public ValueNode valueAt(EndNode pred)
}

Listing 5. Excerpt of the interface used for phi nodes. These
methods are used to access the fields shown in Listing 2.

1

LoopBegin 0

Phi 1

Add

for (int i = 0; i < n; i++) {

//body. .. }

Figure 3. Example graph for a loop.

Note that successor edges are never used for anything that
is not strictly a direct control flow successor. Input edges,
however, are sometimes used for purposes other than pure
data flow. All input edges express a scheduling dependency.
That is, a node must be scheduled after all its dependencies
when emitting code.

2.3 Fixed and Floating Nodes

Nodes are not necessarily fixed to a specific point in the con-
trol flow. The control-flow splits and merges provide a back-
bone around which most other nodes are floating. For exam-
ple, the Add node in Figure 2 is floating. These floating nodes
are only constrained by their data-flow edges and through
additional dependencies such as memory dependencies. The
constraints maintain the program semantics but allow more
freedom of code motion for operations. When a node needs

to express a dependency to a specific branch, it has an input
edge pointing to a specific Begin node.

While building the graph, we create floating nodes for all
nodes where this does not require any special analysis or
dependency creation. Some operations that cannot immedi-
ately be represented as floating nodes, such as memory read
operations, are transformed into floating nodes by later opti-
mization phases that insert the appropriate dependencies.

As explained by Click [3], this representation simplifies
a number of optimizations by removing the burden of main-
taining a valid schedule or performing code motion. Before
emitting machine code, the IR is fully scheduled by assign-
ing each node to a block in the control-flow graph and by
ordering the nodes inside each block. During scheduling,
simple heuristics are used to apply some code motion op-
timization such as hoisting code out of loops.

In order to include the scheduling information in the
graph, all IR nodes that can be scheduled inherit from
ScheduledNode, which has a next successor edge. The
scheduler just sets this pointer. If we want to throw away
the schedule, we can just null out this pointer for all floating
nodes. This can be useful to temporarily schedule the graph
for a specific optimization.

3. Graph Infrastructure

Our declarative framework allows the graph infrastructure
to know about the different node types and their edges. The
graph infrastructure then uses this knowledge to provide ex-
tra functionality that is described below. As annotations and
the usage of fields for edges allow a concise node declara-
tion, the extra functionality enabled by the graph infrastruc-
ture allows the whole compiler to be concise. This section
presents the concepts that our infrastructure provides, while
Section 4 shows how these concepts are implemented effi-
ciently.

3.1 Reverse Edges

For both edge types, the reverse edges are automatically
maintained. The reverse edges for input edges are called us-
age edges (or def-use edges). The reverse edges for succes-
sor edges are called predecessor edges. In the Graal IR, as
a result of the control flow model, there can only be at most
one predecessor’.

Reverse edges are used by compiler optimizations. In
addition, they are used to navigate between related elements
of the IR. For example, the LoopEnd nodes associated with
a LoopBegin node can be found in this LoopBegin node’s
usages.

The reverse edges are automatically updated when a new
node is inserted in the graph. However, if we make an ex-
plicit change to a node’s edges, the graph must be notified to
properly update the reverse edges. Using setter methods for

! Recall that merge nodes refers to the merged branches through inputs, not
predecessors.

these fields mitigates the problem (see Listing 6). There are
notifications for input edges (updateUsages) as well as for
successor edges (updatePredecessor). Note that the graph
is automatically notified when using a NodeInputList or a
NodeSuccessorList.

class Node {
protected void updateUsages(Node oldInput, Node newInput)

}

class IfNode extends Node {
@Input BooleanNode condition;

public void setCondition(BooleanNode x) {
updateUsages(condition, x);
condition = x;

}

}

Listing 6. Setter method for an edge of the if node. This
setter notifies the graph of an input change through the
updateUsages method.

While the direct edges are named and can be distin-
guished from one another, reverse edges are not. For exam-
ple, in Figure 2, we know that the Add node is used by the
Phi node but we do not know if this usage comes from the
merge field or the values field of the Phi node. Even if one
could deduce that it can not be the merge field because of the
field’s type, it could be any index in the values input list. To
discover the precise input from which this usage comes, one
would have to iterate over the Phi node’s inputs.

Also, note that the usages of a node are not maintained as
a set but rather as a multiset. If a node A is used by more than
one input edge of node B, then B appears more than once in
the usages of A.

3.2 [Edge Iterators

All the different edge types can be iterated as seen in the
API excerpt of Listing 7. The direct edges can be iterated
and support modification to existing edges during iteration.
If an edge is modified during iteration before it has been pro-
cessed, the updated value is processed. Adding or removing
an edge from a NodeInputList or a NodeSuccessorList
during iteration is not supported. The nodes from a NodeIn-
putList or a NodeSuccessorlList are seen in their original
order during iteration.

The iterator for the direct edges iterates over the values
of the edges (that is the nodes referenced by the edges)
but it can also be used to iterate over Position objects. A
Position object represent the edge itself. It can be used
to get the value of the same edge on another node or to
get the name of the edge (that is the name of the field).
This is supported by the NodeClassIterator returned by
NodeClassIterable (see Listing 7).

class Node {
public NodeClassIterable inputs()
public NodeClassIterable successors()
public Node predecessor()
public NodeIterable<Node> usages()

}

abstract class NodeClassIterable extends
AbstractNodeIterable<Node> {
@Override
public abstract NodeClassIterator iterator();

}

class NodeClassIterator implements Iterator<Node> {
public Position nextPosition()

}

Listing 7. Edge iterators. (NodeIterable is explained in
Section 3.6 and Listing 11)

For reverse edges, since there can be only one predeces-
sor, this predecessor can be accessed directly. The usages
can be iterated but their order is not specified. Modifying the
usages during iteration of reverse edges is not supported.

3.3 Node Replacement

The explicit and declarative specification of edges allows
methods that change the first edge that points to a specific
node to point to another node. For this purpose we have
two methods in the Node class: replaceFirstInput and
replaceFirstSuccessor (see Listing 8).

class Node {
public void replaceFirstInput(Node oldInput, Node
newInput)
public void replaceFirstSuccessor(Node oldSuccessor, Node
newSuccessor)

public void replaceAtUsages(Node other)
public void replaceAtPredecessor(Node other)

public void replaceAndDelete(Node other)

Listing 8. Node Replacement.

Another useful replacement is to change all edges point-
ing to a specific node to point to a different node. This
is done through replaceAtUsages and replaceAtPrede-
cessor. Finally we can completely replace a node by an-
other one by using the replaceAndDelete method. All these
methods automatically update the reverse edges to account
for the changed direct edges.

Replacement is useful for example when replacing high
level nodes by lower level nodes. In the Graal compiler this
is called lowering. The lowering process allows the IR to
have different granularities during compilation. For exam-

ple, during lowering, a LoadField node is transformed into a
null-check guard and a memory Read node. This is easily im-
plemented by replacing the LoadField node by a new Read
node. Replacement is also useful for implementing constant
folding where the folded operation is replaced by the result-
ing constant.

3.4 Node Cloning

The knowledge about edges also allows the graph infrastruc-
ture to implement node, graph, or sub-graph cloning easily.
One of the interesting applications of cloning is method in-
lining where the graph of the inlined method is cloned into
the graph of the caller. Cloning is also used by transforma-
tions that duplicate code such as tail duplication as well as
many loop transformations.

class Node {
public final Node copyWithInputs()

}

class Graph {
public Map<Node, Node> addDuplicates(Iterable<Node>
nodes, Map<Node, Node> replacementsMap)

Listing 9. Node Cloning.

The copyWithInputs method clones into the same graph
and preserves the input edges. This is useful when cloning
just one node. In order to clone more than one node at a time,
the addDuplicates method can be used. This method can
clone nodes from a different graph and returns a mapping
from the original nodes to the new duplicates.

The edges between the original nodes are preserved in
the cloned nodes. If an edge of an original node points to a
node that is not part of the duplicated ones, it is cleared in
the cloned node. The replacementsMap parameter allows
to replace some of the original nodes with nodes that are
already in the target graph. For example, during inlining
this is used to replace the formal parameters of the inlined
method’s graph by the actual parameters from the calling
method’s graph.

3.5 Typed Iterators

Many optimization phases benefit from quickly accessing
certain types of nodes in the graph. For example, a phase that
transforms loops is interested in iterating over all LoopBe-
gin nodes in the graph. This becomes more important with
larger graphs. The fast iteration over all nodes of a certain
type is available for all node classes that implement the in-
terface IterableNodeType (see for example LoopBegin in
Listing 10). Then it becomes possible to use the getNodes
method of the Graph class described in Listing 10 to iterate
over these nodes.

This method has linear complexity with the number of
nodes of the requested type in the graph, this is, it does not
iterate all nodes of the graph or perform a type check on
every node. If there are n nodes of type T in a graph then
getNodes(T.class) has a O(n) complexity. Note that the
IterableNodeType interface is just a marker interface and
does not contain any methods.

class Graph {
public <T extends Node & IterableNodeType>
NodeIterable<T> getNodes(final Class<T> type)

}

class LoopBeginNode extends MergeNode implements
IterableNodeType {

}

for (LoopBeginNode loop :
graph.getNodes (LoopBeginNode.class)) {

Listing 10. Typed Iterator.

During iteration it is possible to delete a node of the
iterated type from the graph. If this happens, this node is
not processed by the iterator. Also, a node of the iterated
type added to the graph while iterating it is processed by the
current iterator. This behavior is useful when the compiler
needs to process all nodes of a certain type while inserting
new nodes of this same type during the transformation.

Typed iterators are polymorphic: they return all nodes of
the requested type and nodes of subclass of the requested

type.
3.6 Node Iterators

Most of the iterable collections implement the NodeIter-
able<T> interface. This interface adds a number of helper
methods (see Listing 11).

interface NodeIterable<T extends Node> extends Iterable<T> {
<F extends T> NodeIterable<F> filter(Class<F> clazz);
List<T> snapshot();
T first();
int count();
boolean isEmpty();
boolean isNotEmpty();
boolean contains(T node);

Listing 11. Iterable Node collection interface.

The ability to filter on a particular type of node is use-
ful to navigate in the IR. For example, the back-edges of
loops are modeled by LoopEnd nodes that are linked to their
LoopBegin node using a special input edge. To find all the
back-edges of a LoopBegin node, we can look for all of its
usages that are LoopEnd nodes (see Listing 12).

class LoopBeginNode extends MergeNode {
public NodeIterable<LoopEndNode> loopEnds() {
return usages().filter(LoopEndNode.class);

}

}

Listing 12. Using a filter operation on a LoopBegin node to
find its associated LoopEnd nodes.

The NodeIterable interface also allows to take snap-
shots of the collection. This is useful to avoid problems if the
collection is modified during iteration. Other helper methods
such as first, count, isNotEmpty, isEmpty and contains
allow the code using those iterable collections to be concise
and descriptive.

3.7 Global Value Numbering

If nodes of a specific type can be replaced with a congruent
node (as defined by Alpern et al. [2]), it can be marked
with the ValueNumberable interface. Nodes of this type can
then be used with the graph API shown in Listing 13. The
unique method can be used when inserting a new node into
the graph instead of the standard add. If a congruent node
is already present in the graph, it is returned, otherwise the
new node is added to the graph and returned. Once a node is
already in the graph, the findDuplicate can be used to find
congruent nodes.

class Graph {
public <T extends Node> T add(T node)
public <T extends Node & ValueNumberable> T unique(T node)
public Node findDuplicate(Node node)

}

Listing 13. Finding congruent nodes in a graph when
inserting a node or later.

The ValueNumberable interface is just a marker inter-
face and does not require implementing any methods. Once
a node type is marked with it, the graph infrastructure can
automatically uses its knowledge of edges when checking
for congruency. For node types, the graph infrastructure also
knows about fields in nodes that are neither inputs nor suc-
cessors. These fields are called properties and are also taken
into account while checking for congruency. In the Graal IR,
almost all floating nodes are ValueNumberable nodes.

3.8 Serialization

Thanks to the graph infrastructure, we can easily implement
graph serialization. The serialization is done by iterating
over edges and properties. New node types do not need to
do anything to be included in the serialization.

Leveraging this property, we output the graph in different
formats such as XML, plain text, and binary. To view the

graphs we use the visualizers originally developed for the
Java HotSpot server compiler IR [14] and the Java HotSpot
client compiler IR [9].

3.9 Extensibility

The declarative style used for node definitions facilitates
extensibility by reducing the amount of code needed to add a
new node type. When introducing a new node type, all of the
benefits of the graph infrastructure only require adding edge
annotation, marker interfaces (if needed) and notification (if
the node has mutable edges).

To improve extensibility, it is also important to avoid pat-
terns such as the Visitor pattern. To include new node types
in the existing optimization phases, a number of interfaces
are available. For example:

e Canonicalizable can be implemented if the node can
take a canonical form depending on the values of its
edges. The changes are limited to the replacement or
deletion of this node. For example, constant folding is
implemented through this mechanism.

e Simplifiable can be implemented if the node can be
simplified through a large CFG change depending on the
values of its edges. For example, this is used to remove
an If node if the condition is a known constant.

¢ Lowerable can be implemented for a high level node that
should be replaced by lower level nodes.

e | TRLowerable can be implemented for nodes that need
to be transformed into low-level IR for register allocation
and code generation.

In these interfaces, a “Tool” is usually provided as a call-
back into the specific optimization that the node can use. For
example, Listing 14 shows the Simplifiable interface and
the associated SimplifierTool. This tool lets the simplified
node remove a whole branch from the graph and is provided
by the transformation that is calling the simplify method.

interface Simplifiable {
void simplify(SimplifierTool tool);
}

interface SimplifierTool {
void deleteBranch(FixedNode branch);

}

Listing 14. The Simplifiable interface and its associated
SimplifierTool.

4. Implementation
4.1 Edges and Edge Iterators

Using fields for the edges integrates well with developer
tools and operations such as refactoring. It also provides
a compact representation for the nodes. No additional data
structure such as an array is needed to store the direct edges.

In Figure 4, we can see the structure of a node. The example
is based on an Add node as defined in Listing 15. The ref-
erences to the different edges are stored in the fields of the
node object.

abstract class ScheduledNode extends Node {
@Successor private ScheduledNode next;

}

class AddNode extends ScheduledNode {
@Input private Node left;
@Input private Node right;

}

Listing 15. Definition of an Add node that extends
ScheduledNode.

A node

next
left

right

Figure 4. Structure of a node: edges as fields.

In addition to the edge fields, all nodes have a number of
other fields used by the graph infrastructure. This is illus-
trated in Figure 5. The graph infrastructure is implemented
using a metaclass system. For each node type, we automati-
cally build a metaclass that describes it. This metaclass con-
tains information about all the edge and property fields. Each
node has a reference to its metaclass.

A node
metaClass
id
graph
usages

predecessor

Figure 5. Structure of a node: header for the graph infras-
tructure.

Nodes have a numeric identifier that is unique in the
scope of their graph. This “id” is assigned when the node
is added to the graph. Nodes also have a reference to their
graph. The graph itself contains an array of its nodes.

Each node has a reference to its list of usages that is
maintained when new nodes are added to the graph or when
a node changes one of its edges. The other type of reverse
edge is the predecessor. Since nodes can have at most one
predecessor, they have a direct reference to this predecessor
that is maintained in a similar fashion to the usages.

To achieve fast iteration over the edges of a node, the
metaclass has a list of offsets where edges can be found

in the node type it describes. For example in Figure 6, we
can see that the metaclass knows that inputs can be found
at offsets 56 and 64 while a successor edge can be found at
offset 48. In order to iterate over edges, we just iterate over
these arrays of indexes and directly access the edges in the
node object using Unsafe? access.

A node
0 metaClass ——> ils meta-class
inputsOffsets [56, 64]
48 next successorsOffsets [48]
56 left
64 right

Figure 6. Structure of a node: the metaclass.

4.2 Typed Iterators

In order to implement the fast typed iterators, we use lists of
nodes for each node type that implements IterableNode-
Type. This is a simply linked list of node objects. The pointer
to the next element is directly embedded in the node class
(see Figure 7). This avoid the need for wrapper objects for
these lists. There is one list per IterableNodeType, which
means that all nodes in such a list have the same class and
metaclass.

their meta-class

> iterablesld
iterableslds|[]
A node A node
metaClass metaClass
iterablesNext > iterablesNext —

Figure 7. Linked list of nodes implementing Iter-
ableNodeType.

To find the head and tail of these simple linked lists, each
graph has a table for both heads and tails (see Figure 8).
To allow fast access, these tables are arrays indexed by a
numeric identifier that is unique to each metaclass. This
iterablesId can be seen in the metaclass in Figure 7.
The head is used to start iteration while the tail is used
to add new nodes to the list when a node implementing
IterableNodeType is added to the graph.

A graph
iterablesFirst —> table of heads nodes
iterablesLast —> table of tails nodes

Figure 8. Graph structure containing the head and tail ta-
bles.

2The sun.misc.Unsafe API allows low-level access to Java objects

To support polymorphism for typed iterators, each node
metaclass has a list of iterablesIds that it should process.
This can be seen in the iterablesIds array in the metaclass
in Figure 7. The typed iterators process all the nodes of each
class found in this array. When it reaches the end of the
iterablesIds array, it goes back at the beginning. For each
class, it restarts in linked list from the last node it saw in the
last iteration. This process in repeated until no new nodes are
found.

This is important because we want the typed iterator to
process new nodes that are inserted during iteration. For
example, Merge is an IterableNodeType and LoopBegin
is a subclass of Merge. While iterating over all Merge nodes,
we start iterating using the linked list of Merge nodes, then
we use the linked list of LoopBegin nodes. If while using the
linked list of LoopBegin nodes, a new Merge node is added,
we need to go back to the Merge nodes linked list to see it.

Deleting nodes from these lists is done lazily: when a
node is deleted from the graph, it is just marked as deleted.
Later when some code requires iteration over these lists us-
ing a typed iterator, deleted nodes are unlinked while iterat-

ing.

5. Results

The source code of the Graal IR and Graal compiler is
available as part of the Graal OpenJDK project [11].

To evaluate the granularity of the IR, we measured the
number of nodes in IR graphs at different points during com-
pilation in the Graal compiler. We compared those numbers
to similar measurements in the HotSpot client and server
compilers from HotSpot 24.0-b20 [1]. This evaluation was
done using an x86_64 version of the three compilers by
running all DaCapo benchmarks [7] (version 9.12) multiple
times.

Both the Graal compiler and the server compiler use spe-
cial nodes to keep deoptimization states (FrameState nodes
in Graal IR) whereas the client compiler keeps those state as
a special data structure. To make a meaningful comparison,
these client compiler data structures are counted as IR nodes.
The results are shown in Figure 9.

3

— Y .
ST
—&— Graal

/ Client

—a— Server

~
«n

~

=
«n

[

Nodes per bytecode

=3
«n

After parsing After After Lowering After Before code
optimizations optimizations emission

Figure 9. Number of nodes per bytecode at various steps of
the compilation for different compilers.

After parsing the methods, the size of the Graal IR is
similar to the size of graphs in the client compiler. This can

be explained because both have similar high-level IRs at this
point. The server compiler IR, on the other hand, is already at
a lower level and has significantly more nodes per bytecode.

In both the Graal compiler and the server compiler, the
IR grows during optimization because of transformations
that duplicate code (loop optimizations and tail duplication).
The client compiler does not perform such transformations
and thus the size of its IR remains almost the same after
optimization.

As expected, the lowering phase expands the number
of nodes in the Graal IR, bringing it closer to the size of
the server compiler IR. Further optimizations in the Graal
compiler slightly lower the number of nodes again due to
simplifications.

When bringing the IR close to machine code (“Before
code emission”), the high-level nodes of the client compiler
IR are split into lower-level operations, increasing the size
of the IR. For the Graal compiler and the server compiler,
the already low-level IRs shrink during this operation. In
the server compiler this is done using a bottom-up rewrite
system, which selects platform-specific instructions [12]. On
the x86 platform, the use of complex instructions can explain
this shrinking. In the Graal compiler the IR shrinks because
nodes that do not emit code (such as for example FrameS-
tate nodes, Begin nodes) are discarded.

6. Future Work

To improve the precision of node declarations, we plan to
support for commutative edges. This would allow the graph
to consider two addition operations congruent even if their
inputs are swapped.

7. Related Work

The Graal IR is related to the graph IR presented by Click
[4, 5] where nodes are not necessarily fixed to a specific
point in the control flow. This kind of IR retains ideas from
the Program Dependence Graph (PDG) of Ferrante et al.
[8] where only the dependencies necessary to express the
program semantics are kept.

A notable difference to Click’s model is the different di-
rection of edges for control flow and data flow. This property
allows our IR to avoid projection nodes in the control flow
graph. In Click’s IR, such nodes are necessary in order to dif-
ferentiate the successors of a control split. In our IR, since
a control split points to its successors, projection nodes are
not needed.

Also, in Click’s IR, edges of a node are referenced with
integer indexes. We use named edges in order to improve the
maintainability of the IR itself as well as the maintainability
of code that uses the IR.

8. Summary

We have seen how the declarative style of an IR can convey
useful information to an underlying framework while mak-

ing the declaration of IR nodes clear and concise. We have
also seen how using this information allows the IR frame-
work to provide useful functions to the compiler.

This declarative style and this framework help keeping
declaration of new nodes easy and also serves as an interface
to develop the transformation phases of the compiler. As part
of the IR framework we have also implemented an efficient
way of iterating over all nodes of a specific type.

Acknowledgments

Oracle and Java are registered trademarks of Oracle and/or
its affiliates. Other names may be trademarks of their respec-
tive owners.

References

[1] HotSpot Express 24, build 20. URL http://hg.openjdk.
java.net/hsx/hsx24/hotspot/rev/6d0436885201.

[2] B. Alpern, M. N. Wegman, and F. K. Zadeck. Detecting
equality of variables in programs. In Proceedings of the
ACM SIGPLAN Symposium on Principles of Programming
Languages, pages 1-11. ACM Press, 1988. ISBN 0-89791-
252-7. doi: 10.1145/73560.73561.

[3] C. Click. Global code motion/global value numbering. In Pro-
ceedings of the ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages 246-257. ACM
Press, 1995. ISBN 0-89791-697-2. doi: 10.1145/207110.
207154.

[4] C. Click and M. Paleczny. A simple graph-based intermediate
representation. In Papers from the ACM SIGPLAN workshop
on Intermediate representations, IR °95, pages 35-49. ACM
Press, 1995. ISBN 0-89791-754-5. doi: 10.1145/202529.
202534.

[5] C. N. Click, Jr. Combining Analyses, Combining Optimiza-
tions. PhD thesis, Rice University, 1995. URL http://hdl.
handle.net/1911/16807.

[6] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K.
Zadeck. Efficiently computing static single assignment form
and the control dependence graph. ACM Transactions on
Programming Languages and Systems, 13(4):451-490, Oct.
1991. ISSN 0164-0925. doi: 10.1145/115372.115320.

[7] DaCapo Project. The DaCapo Benchmark Suite, 2012. URL
http://dacapobench.org/.

[8] J. Ferrante, K. J. Ottenstein, and J. D. Warren. The program
dependence graph and its use in optimization. ACM Transac-
tions on Programming Languages and Systems, 9(3):319-349,
July 1987. ISSN 0164-0925. doi: 10.1145/24039.24041.

[9] Java.net. Java HotSpot client compiler visualizer, 2012. http:
//java.net/projects/clvisualizer/.

[10] T. Kotzmann, C. Wimmer, H. Mdossenbock, T. Rodriguez,
K. Russell, and D. Cox. Design of the Java HotSpot™ client
compiler for Java 6. ACM Transactions on Architecture and
Code Optimization, 5(1):7:1-7:32, May 2008. ISSN 1544-
3566. doi: 10.1145/1369396.1370017.

[11] OpenJDK Community. Graal Project, 2012. URL http:
//openjdk.java.net/projects/graal/.

[12] M. Paleczny, C. Vick, and C. Click. The Java HotSpot™
server compiler. In Proceedings of the Symposium on
Java Virtual Machine Research and Technology, pages 1-12.
USENIX, 2001.

[13] B. L. Titzer, T. Wiirthinger, D. Simon, and M. Cintra. Improv-
ing compiler-runtime separation with XIR. In Proceedings of
the ACM/USENIX International Conference on Virtual Exe-
cution Environments, pages 39-50. ACM Press, 2010. ISBN
978-1-60558-910-7. doi: 10.1145/1735997.1736005.

[14] T. Wiirthinger, C. Wimmer, and H. Mossenbock. Visualiza-
tion of program dependence graphs. In Proceedings of the
International Conference on Compiler Construction, pages
193-196. Springer-Verlag, 2008. ISBN 3-540-78790-9, 978-
3-540-78790-7.

