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Abstract
Modern virtual machines for Java use a dynamic compiler
to optimize the program at run time. The compilation time
therefore impacts the performance of the application in two
ways: First, the compilation and the program’s execution
compete for CPU resources. Second, the sooner the compila-
tion of a method finishes, the sooner the method will execute
faster.

In this paper, we present two strategies for mitigating the
performance impact of a dynamic compiler. We introduce
and evaluate a way to cache, reuse and, at the right time,
evict the compiler’s intermediate graph representation. This
allows reuse of this graph when a method is inlined multiple
times into other methods. We show that the combination
of late inlining and graph caching is highly effective by
evaluating the cache hit rate for several benchmarks.

Additionally, we present a new mechanism for optimizing
the order in which methods get compiled. We use a priority
queue in order to make sure that the compiler processes
the hottest methods of the program first. The machine code
for hot methods is available earlier, which has a significant
impact on the first benchmark.

Our results show that our techniques can significantly
improve the start up performance of Java applications. The
techniques are applicable to dynamic compilers for managed
languages.

Categories and Subject Descriptors D.3.4 [Programming
Languages]: Processors—Compilers, Interpreters, Run-time
environments

General Terms Algorithms, Languages, Performance
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1. Introduction
Managed language runtimes start the execution of a program
by interpreting its methods. The runtime dynamically detects
hot methods that form a significant part of the program’s
execution time. Figure 1 shows the life cycle of such a hot
method. The first invocations are slowly executed in the
interpreter. Then the method is compiled and subsequently
executed fast in native machine code. While the compilation
of a method is often performed in parallel to the running
program, it still competes with the program for CPU cycles.

There are two important metrics that affect the program’s
overall performance: First, the number of invocations of
a hot method before it gets compiled. Second, the time
necessary to compile a hot method.

In this paper, we present techniques for reducing those
two metrics. The compilation of a method uses significant
CPU resources such that it does not pay off to compile rarely
executed methods [10]. Therefore, it is not sufficient to just
reduce the number of invocations before a method gets com-
piled. Instead the runtime must make sure that the hottest
methods are compiled earlier, because their compilation re-
sults in the biggest improvement on the program’s execution
speed. The aggressive inlining of dynamic compilers results
in many methods being parsed several times (see Figure 4).
This makes caching strategies for the method’s intermediate
representation an interesting target for optimizing the com-
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Figure 1. Executing a method in a managed runtime.



pilation time without major compiler modifications. This pa-
per contributes the following:

• We present a new approach for managing the compilation
queue of a dynamic compiler.

• We introduce an algorithm that combines late inlining
and graph caching for reducing the compilation time.

• We show the effectiveness of the graph caching by eval-
uating the cache hit rate.

• We give an extensive evaluation of our techniques in the
context of different compilation thresholds.

• We demonstrate that the combined application of our
techniques significantly improves the startup perfor-
mance.

2. System Overview
We implemented our system in the context of the Graal
OpenJDK project [12]. The Graal VM is a modification of
the Java HotSpotTM VM where the compiler and the com-
pilation queue are replaced with an implementation in Java.
Figure 2 gives a schematic view of the system components
that are relevant for the techniques described in this paper.
The HotSpotTM VM starts executing the Java program in the
interpreter. When a method gets hot, the VM inserts it into
the compilation queue with a priority value that determines
the hotness. If the hotness changes over time, the VM has
the ability to update the priority value.

The compiler uses a configurable number of worker
threads that poll this queue and consecutively remove the
topmost method to compile it. After the compilation fin-
ishes, the resulting machine code is sent back to the runtime,
which installs it in its code cache. The runtime makes sure
that subsequent calls to that method immediately jump to
the compiled machine code instead of the interpreter.

Whenever the compiler needs the intermediate represen-
tation graph for a method, it first queries the graph cache
whether it already exists for this method. Only if there is no
cache hit, the compiler performs the expensive parsing of
the method’s bytecodes, resolves the bytecodes’ references
into the constant pool, and builds a static single assignment
(SSA) form [5] representation. Otherwise, the cached graph
is directly used. The Graal compiler performs inlining by re-
placing an invocation compiler node by the compiler graph
of the called method.

The cached graphs can be built using optimistic assump-
tions about the current state of the application. Such assump-
tions can be invalidated by subsequent changes in applica-
tion behavior. Therefore, the runtime must be capable of re-
moving graphs from the cache if one of their assumptions
no longer holds. This invalidation can also be necessary for
installed machine code. If machine code associated with an
invalid assumption is executed, it is deoptimized [8], and ex-
ecution continues in the interpreter.
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Figure 2. System architecture of the Graal VM.

The modifications necessary to implement our techniques
to the Graal VM are limited: We changed the way methods
are selected for compilation, created a priority compilation
queue, and added the graph caching mechanism. Therefore,
the techniques can be applied to any managed runtime that
includes a compilation queue and the ability to store and
reuse the compiler graphs.

We will first describe our compilation queuing system,
then we will discuss graph caching and its implementation.
We will then evaluate the impact of these changes on the
performance of various benchmarks.

3. Compilation Queuing
Since the compilation of methods in a system using a dy-
namic compiler happens concurrently to the running appli-
cation, it is important that the methods with the most influ-
ence on application run-time performance are compiled first.
Additionally, the system needs to decide which methods are
important enough to be compiled at all, and which methods
will only ever be executed in the interpreter.

3.1 Detecting Hot Methods
In order to compile methods at the optimal point in time,
knowledge would be required about when methods will be
called during execution. In dynamic environments, like a
Java VM, the system cannot foresee the future, and therefore
all its decisions need to be based on a heuristic that predicts
method usage patterns using previous events.

There are two basic ways in which the dynamic behavior
of an application can be used to determine when a method
should be considered for compilation:

Invocation Counters are kept for each method, and incre-
mented each time the method is called. In order to give
weight to long-running loops, the counter is usually also
incremented on loop back edges within a method.



When a sufficiently large number of invocations has been
recorded (i.e., the so-called compilation threshold has
been reached), a method is considered to be hot, and
therefore scheduled for compilation.

Stack Sampling periodically records the top frame of each
thread’s stack. When a method is contained within a
sufficient amount of these recordings, it is considered to
be hot.
This sampling needs to happen many times per second,
otherwise the system will either take too long to detect
important methods or be too imprecise to detect the right
methods.

The Graal VM uses invocation counters to detect hot meth-
ods, similar to the HotSpotTM VM, on which it is based.

3.2 Method Hotness Model
In order to be able to determine the importance of a specific
method, a measure of the future usage of the method would
be required. Since this cannot be measured, an approxima-
tion of the method’s future importance can be based on how
many times it has already been executed. Once a method is
considered hot (e.g., because its invocation count reached the
compilation threshold), there are different models to assign
importance to methods:

FIFO. The relative importance of methods is determined
solely by the order in which they reach their compilation
threshold.

Size-Based. Smaller methods are more important.

Kulkarni’s Method. Kulkarni [10] introduces an algorithm
that scales the method invocation count by a global
counter which is incremented for every method invo-
cation. This technique favors methods that have recently
been invoked very frequently.

All of these have significant drawbacks: The FIFO tech-
nique does not react to changes in application behavior, as
it is not able to favor methods that have recently become
very hot over less important methods that have been added to
the compilation queue before. The size-based technique also
does not react to changes in application behavior, and the
size of a method does not predict the method’s influence on
performance in the presence of inlining. Kulkarni’s method
is able to react to changes in application behavior, but only
as long as the method’s priority is correct when it reaches
the compilation threshold the first time. Also, the global in-
vocation counter is a very coarse scaling factor that depends
on many unrelated elements.

We therefore introduce a new system to measure the hot-
ness of a method that calculates the actual speed at which
the invocation counter increases. As long as a method is not
compiled yet the runtime environment will periodically de-
termine the method’s priority by relating the change in invo-
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Figure 3. Overview of the states and transitions of methods.

cation count with the elapsed time:

Priority =
∆ method invocation count

∆ timestamp

A simple compilation threshold is used to determine when
the method is first considered for compilation.

This approach provides a good initial approximation of
method importance and can react quickly if a method sud-
denly becomes more important. This happens, for example,
when an application enters a new phase [11].

We decided to use the speed-based approach, because
it is reasonably simple to implement, provides an accurate
approximation of method hotness and can react to changes
in application behavior quickly.

Figure 3 shows the states that methods can have in our
system and the transitions between these states: As long as
a method has never been executed, it is in its initial state.
When it is invoked for the first time the method’s times-
tamp will be set, and the method then waits until its invoca-
tion counter reaches the compilation threshold (waiting for
threshold). As soon as the threshold is reached, the speed
at which the invocation counter increases is calculated using
the above formula and used as priority for the compilation
queue (in queue). Also, the invocation counter will be reset
so that the priority can be updated as soon as the compilation
threshold is reached again.

When the compilation of a method starts it is removed
from the queue (compiling). If the compiler determined that
for some reason it is not able to compile the method, it will



switch to the not compilable state. If the compilation finished
successfully, the method will be in the compiled state.

Later on the method might be deoptimized because an
assumption was violated (see Section 4.3), in which case
the system will set the method’s timestamp and then wait
for the method’s invocation counter to reach the compilation
threshold again.

3.3 Compilation Queue with Priorities
We implemented the compilation queue in such a way that
it is ordered according to the priorities of the methods to be
compiled:

• The compilation queue itself is an efficient thread-safe
priority queue, along with worker threads that take ele-
ments from the queue and process them. The number of
worker threads defaults to the number of available cores
in the system.

• Each time a method is ready to be compiled a compilation
task is created and put into the compilation queue.

• The compilation tasks are ordered according to the priori-
ties (i.e., the invocation counter speeds) of their methods.

• Compilation tasks may be reordered when the priority of
a method improves. Since reordering within the compila-
tion queue is a time-consuming task it is only performed
if the priority changes significantly (by at least a factor of
two). The original compilation task is canceled (by sim-
ply setting a flag on it) and a new one is inserted with the
new priority.
Note that the compilation tasks are only reordered if a
method’s priority improves, because also reordering on
priority decreases can lead to situations where methods
that are used in bursts will be compiled very late.

4. Graph Caching
Inlining is the process of replacing a call to a method with
the method’s implementation. It is one of the most important
optimizations that compilers perform in order to increase the
run-time performance of applications. Dynamic compilers,
like the HotSpot client and server compilers and the Graal
compiler, usually perform a large amount of inlining during
compilation.

The same method is often inlined multiple times in differ-
ent places. The cache hit ratio in Figure 4 shows the average
probability that a method that is about to be inlined has been
inlined before, for a typical benchmark (the DaCapo bench-
mark suite, see Section 5). Overall, the probability is above
90%, and most methods that are inlined are small (98% are
smaller than 100 bytecodes, and 75% are smaller than 25
bytecodes).

Given the right infrastructure the compiler could cache
intermediate results (i.e., compiler graphs) for methods that
are inlined multiple times. The high reuse will translate to
the high cache hit rates shown in Figure 4. However, such
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Figure 4. Cache hit rate and inlining distribution during
typical benchmarks, in relation to the inline method’s size.

a system needs to fulfill some specific requirements and it
also needs to be aware of how some parts of the compiler
interact with the cache. These requirements and interactions
are explained in the following sections.

4.1 Late Inlining
Traditionally, dynamic compilers (e.g., the HotSpot client
and server compilers) perform inlining during their byte-
code parsing phase, by parsing the bytecodes of the inlined
method as if they were part of the caller. However, this has
several disadvantages:

• The compiler needs to make the inlining decision very
early. This forces certain optimizations, such as global
value numbering and canonicalization, to be done al-
ready during bytecode parsing, which makes parsing
more complicated.

• Optimizations that happen later, like escape analysis [2],
cannot perform inlining even if they see that it would be
beneficial.

Graal, on the other hand, does late inlining (like, for
example, JRockit [13]). It does not contain any facilities
to perform inlining during the bytecode parsing step. This
significantly decreases the complexity of Graal’s bytecode
parsing component, because it does not need to deal with
multiple method scopes at once.

Graal’s inlining system parses the method that needs to
be inlined into a separate graph and copies the contents into
the target graph. Copying the graphs is a fast and simple op-
eration that takes only a negligible percentage of the compile
time for typical benchmarks.

Separating bytecode parsing from inlining not only makes
the compiler simpler and easier to maintain, it also has the
effect that bytecode parsing itself resembles a pure func-
tion, whose results(i.e., the compiler graph that resulted from
parsing the method to be inlined) can be cached for subse-
quent inlining operations. Inlining during bytecode parsing
uses, and changes, the state of the parent method compila-
tion, and therefore no intermediate results can be reused.



4.2 Garbage Collection
Most Java JIT compilers use some variant of explicit region
memory allocation [6], also called zone allocation or arena
allocation. This means that all temporary data structures
allocated during compilation are freed en bloc at the end of
the compilation process.

While this works well in limiting the life time of allocated
memory, it also means that all compilation results need to be
rescued explicitly in order to survive the destruction of the
compilation’s memory region. HotSpot, for example, copies
the generated machine code of every method and a serialized
version of the associated meta data (debug information, relo-
cation info, etc.) to a global code cache before freeing what
it calls a resource area.

Similarly, cached intermediate results also need to be
rescued to a different memory area in a compiler that uses
zone allocation.

Graal lets the JVM’s garbage collector free the memory
allocated during compilations. Therefore, data structures ref-
erenced by a global cache system will automatically be kept
alive, and can use Java’s soft pointers to respond to memory
pressure appropriately.

4.3 Assumptions
Modern JIT compilers will perform aggressive optimizations
based on assumptions about the future state of an application
and use deoptimization in case one of the assumptions does
not hold at a later point in time. There are two types of
assumptions:

Static Assumptions deal with state surrounding a method,
like the list of loaded classes.
They are used, for example, to optimize potentially poly-
morphic calls. If class hierarchy analysis guarantees that
only one class has been loaded as the potential receiver
type, the call can be replaced by a static call. If other
potential receiver classes are loaded later on, the assump-
tion is violated and the code depending on the assumption
needs to be invalidated.

Dynamic Assumptions depend on the dynamic behavior of
an application. Dynamic assumptions are usually facts
that cannot be statically proven, but are hinted at by
profiling feedback gathered by the interpreter.
For example, a compilation might make the assumption
that a branch is never taken. In this case the branching
condition still needs to be checked, in order to see if the
assumption holds.

Static assumptions are generated during and after inlining,
and therefore after intermediate results have been put into
the cache. This means that the graphs that are put into the
cache do not yet incorporate any static assumptions, so there
is no need for the graph caching system to deal with them.

Dynamic assumptions, however, can be taken during
bytecode parsing. For example, the compiler might com-

pletely omit a branch when the profiling information sug-
gests that it will never be taken. This means that any cached
intermediate result will encode a specific behavior of the ap-
plication that might or might not still conform to the actual
behavior later on.

When the behavior of a method that has been compiled
changes, some dynamic assumptions might not hold any
more. In case the execution reaches such an assumption,
the only thing a system without a graph cache needs to do
is to invalidate the compiled version of the method. When
using a graph cache, however, this also means that if the
dynamic assumption originates from within a cached graph,
this graph needs to be evicted from the cache. Subsequent
compilations would otherwise reuse a cached graph that
represents outdated behavior, possibly leading to repeated
deoptimizations.

4.4 Graph Caching Implementation
Our system implements caching of intermediate results
within the compiler in the following way:

• Whenever the compiler performs an inlining, it first
checks if there is a cached version of the method to be
inlined. If there is a cached version, it will be used, oth-
erwise the method’s bytecodes will be parsed.

• Whenever a method is parsed during inlining, it will be
put into the graph cache.

• The graph cache is a data structure that is global to
the compiler, so it needs to be thread-safe because the
Graal compiler uses multiple compiler threads within
one compiler instance. This is easily achieved in Java by
using readily available synchronized data structures.

• Our graph cache is implemented as a least-recently-
added cache with a fixed maximum size. Insertion in-
stead of access ordering was chosen in order to lower
the contention when multiple threads access the cache.
The influence of different cache sizes is evaluated in Sec-
tion 5.2.4.

• In order to be able to track deoptimizations back to the
inlining graph they originate from, each node in the com-
piler graph that can later on lead to a deoptimization is
associated with the inlining graph it was created in. This
way the graph cache can evict the correct graphs from the
cache when a deoptimization happens. Globally unique
IDs are associated with inline graphs to avoid having to
keep object references that potentially prevent garbage
collection of graphs.

• The compiler hands over the ID of the graph that caused
a deoptimization to the runtime system as part of the de-
bugging information associated with that deoptimization.



5. Evaluation
All benchmarks were executed on an Intel Core i5 750
quad-core 2.67GHz CPU running Ubuntu 11.10 (Linux
3.0.0-17). Graal was built using revision d5cf399e6637
from the official OpenJDK Graal repository available at
http://hg.openjdk.java.net/graal/graal.

We use the DaCapo benchmark suite [1] in the cur-
rent version (9.12-bach) in order to evaluate the impact of
our caching and queuing optimizations. The DaCapo suite,
which is split into 14 sub-benchmarks, is widely used and
therefore well understood. It also has a useful notion of
benchmark runs, which allows us to measure the impact
of optimization on both first and best run performance.

The charts in this section are all arranged on a linear, un-
biased, lower-is-better scale. Depending on the context, the
unit of measurement is either run time in milliseconds or run
time as percentage of the run time of a normal, unoptimized
run. The relative representation is necessary when different
sub-benchmarks are shown in one chart because of the wide
range of absolute run time measurements (from 1.5 to 30
seconds).

All benchmark results in this section were produced by
10 runs of the benchmark suite with the same parameters.
Averages for specific benchmarks were calculated as arith-
metic mean, and the associated charts show the standard de-
viation of the results. Averages over multiple benchmarks
were calculated using the geometric mean, because the dif-
ferent DaCapo sub-benchmarks have significantly different
run times.

The evaluation contains results for four different VM con-
figurations: Normal is the unmodified compilation queue
policy, without graph caching. Cache is the unmodified
compilation queue policy, with graph caching. Prio is the
priority queue compilation policy, without graph caching.
Prio cache is the priority queue compilation policy, with
graph caching.

5.1 Peak Performance
Figure 5 shows the overall peak performance of the bench-
mark (expressed as the geometric mean of all the sub-
benchmarks) for different VM configurations, clustered by
compilation threshold. The peak performance is measured
after a large number of iterations, by which time all impor-
tant methods have been compiled and the benchmark results
stabilize. Our optimizations do not have a statistically signif-
icant influence on the peak performance of the benchmark.

For the compilation queue optimizations this is to be ex-
pected, since by the time the peak performance is measured
all important methods will have been compiled, and the or-
der in which they are compiled does not influence the out-
come.

The graph caching optimizations, however, could theo-
retically have a negative influence on peak performance. By
caching graphs the compiler always uses only the informa-
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Figure 5. Geometric mean of the best runs of all bench-
marks, for different VM configurations, clustered by com-
pilation threshold.

tion about the running application that was available when
the graph’s method was inlined the first time. This could lead
to suboptimal compilation results, e.g., the dynamic assump-
tions incorporated into the graph might be inaccurate. In the
benchmarks, however, this does not seem to be the case. This
means that by the time a method is old enough to be inlined
the first time, it is mature enough so that caching the graph
does not have a negative effect on peak performance.

It is important to note that the compilation threshold also
has no significant influence on peak performance. On the
one hand this is not surprising, since by the time the best
run is measured all important methods will have been com-
piled, regardless of the compilation threshold. On the other
hand, this means that the additional maturity of the meth-
ods gained by the higher compilation threshold does not im-
prove peak performance. This is an interesting observation,
because Graal relies very heavily on profiling information to
produce optimized compilation results.

5.2 First Run Performance
The area where the compilation queue and graph caching
optimizations should have the largest influence is the per-
formance of the first run of the benchmarks. Therefore we
explicitly measured the first run performance of the DaCapo
benchmark suite for different VM configurations over a large
range of compilation thresholds to determine:

• Do the graph caching optimizations have a positive influ-
ence on first run performance?

• Do the compilation queuing optimizations have a positive
influence on first run performance?

• How does the influence of the optimizations change when
the compilation threshold is increased or decreased?

• Which is the optimal combination of VM configuration
and compilation threshold?
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Figure 6. Geometric mean of the first run of all bench-
marks, for different compilation thresholds, clustered by VM
configuration.

5.2.1 Overall Influence on First Run Performance
Figure 6 shows the overall first run performance of the
benchmark (expresses as the geometric mean of all sub-
benchmarks) for different compilation thresholds, clustered
by VM configuration.

The best results overall are achieved at a compilation
threshold of 2,000 using the ”prio cache” configuration at
5,777 ms, which is a speedup of 6% over the best result for
the ”normal” configuration (6,154 ms), which is achieved at
a compilation threshold of 3,000.

Figure 6 also shows that the compilation queue and graph
caching optimizations vastly improve performance for low
compilation thresholds. A lower compilation threshold leads
to more methods being put into the compilation queue,
which in turn means that it is more important to prioritize
and quickly compile these methods.

Figure 7 shows the overall first run performance of the
benchmark for different VM configurations, clustered by
compilation threshold. This again shows that our optimiza-
tions have the most influence on performance for low com-
pilation thresholds. At a compilation threshold of 20,000
there is virtually no difference in performance between VM
configurations. At this threshold all configurations perform
equally bad because the threshold fails to catch important
methods during the first benchmark run.

5.2.2 Detailed Influence on First Run Performance
Figures 8 through 10 show the detailed influence of our
optimizations on the DaCapo sub-benchmarks.

In Figure 8 the compilation threshold is at 500 invo-
cations. Here the difference in the effects of the compi-
lation queue and graph caching optimizations on the sub-
benchmarks is most visible.

The largest gains can be seen on sub-benchmarks that
have a small set of important methods (fop, luindex, pmd). In
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Figure 7. Geometric mean of the first run of all bench-
marks, for different VM configurations, clustered by com-
pilation thresholds.

these cases it is important to quickly select the right methods
for compilation.

There are benchmarks that do not improve due to our
optimizations, but overall the combination of graph caching
and compilation queue optimizations is always beneficial.

With an increasing compilation threshold the overall ben-
efit from our optimizations decreases, as seen in Figures 9
and 10. Fewer methods will be compiled during the first run,
and the compiler therefore has fewer opportunities to select
and quickly compile the correct methods.

5.2.3 Compilation Queue Optimizations
Adjusting the order in which methods are compiled accord-
ing to their importance leads to methods that have a large
impact on application performance being compiled earlier.
This allows for a lower compilation threshold, which would,
without this reordering, pollute the compilation queue with
less important methods.

5.2.4 Graph Caching
Figure 11 shows the influence of different graph cache sizes
on first run performance. While the graph cache already
shows an improvements for very small cache sizes, the best
results are achieved at a size of 1000.

The main effect of the graph caching is that it reduces
the compilation time for methods. During the first run this
has the effect that the compilation queue will be processed
quicker, so that important methods will be compiled earlier.

Later on, the main effect of graph caching is that it lowers
the CPU load generated by the compiler, which improves
performance only on benchmarks that use all available cores
and only as long as methods are getting compiled.

We measured the total time spent compiling methods
during all DaCapo sub-benchmarks. The total time without
graph caching is 225 seconds, while the total time with graph
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Figure 8. Benchmark results for the first run with a compilation threshold of 500 invocations.

  0%

  20%

  40%

  60%

  80%

  100%

  120%

avrora batik eclipse fop h2 jython luindex lusearch pmd sunflow tomcat tradebeans tradesoap xalan average

ru
n
 t

im
e 

o
f 

fi
rs

t 
ru

n
 (

re
la

ti
v

e 
to

 "
n
o

rm
al

")

normal

cache

prio

prio_cache

Figure 9. Benchmark results for the first run with a compilation threshold of 2,000 invocations.

  0%

  20%

  40%

  60%

  80%

  100%

  120%

avrora batik eclipse fop h2 jython luindex lusearch pmd sunflow tomcat tradebeans tradesoap xalan average

ru
n

 t
im

e 
o
f 

fi
rs

t 
ru

n
 (

re
la

ti
v

e 
to

 "
n
o

rm
al

")

normal

cache

prio

prio_cache

Figure 10. Benchmark results for the first run with a compilation threshold of 5,000 invocations.
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Figure 11. Geometric mean of the first run of all bench-
marks, for different graph cache sizes, clustered by VM con-
figuration.

caching is 185 seconds, which amounts to an 18% reduction
in compilation time.

6. Related Work
The cost of runtime compilation and the mitigation of this
cost have been studied and attacked in different ways.

It is generally assumed that there at least 2 modes of
execution: a baseline mode which requires very little time to
start but runs rather slowly and one or more optimized modes
which take more time to start, but run faster afterwards.
Such a system can be efficient because applications usually
spend most of their time running only a small portion of
their code. For example, SELF-93 [7] uses a fast baseline
compiler and sends only a selected number of methods to
a better, but slower, optimizing compiler. This technique is
used in almost all JIT systems when both performance and
interactivity are required.

Such systems can be further improved by running the
compiler on a separate thread, in order to avoid pauses in
the application code an thus make the startup phase of the
application even less noticeable. This background compila-
tion has been proposed by Plezbert and Cytron [15], is used
in the HotSpot JVM [14] and has also been studied in the
Jalapeño JVM [9]. In the case of background compilation
there is often more than one compilation thread, in order to
drain the compilation queue faster. This is especially benefi-
cial in a multi-processor environment where it is more likely
that the compilation really happens in parallel to the appli-
cation’s execution.

The most common way of selecting methods for compi-
lation is by looking at how much they are being used by the
application at runtime. However, doing so means that when
these method are compiled they have already been running
a lot in a slow mode. Various systems have been proposed
to predict which methods will be beneficial to compile be-

fore they become hot and thus further reduce the cost of
startup. For example, Campanoni et al. [4] inspect the code
of the methods and use analysis such as static branch pre-
diction to chose the method which are the most likely to be
needed. Kulkarni [10] also proposes to use profiling infor-
mation from previous runs of the same application to be able
to immediately start to compile the methods which were hot
in previous runs.

Kulkarni has also studied policies for selecting the meth-
ods which should be optimized and the effect of these poli-
cies in single- and multi-processor environments. These
policies include different compilation thresholds and im-
mediate compilation of all methods that were compiled in
previous runs. He also assesses the effect of the number of
background compilation threads for his different policies.
Then he studies the ordering of the compilation queue with
two strategies : first by using execution counts from a previ-
ous run in order to compile the hottest methods first, and then
by using a heuristic to determine how quickly the method be-
came hot prior to being queued for compilation. The study
shows that ordering the compilation queue helps to counter
the adverse effects of a low compilation threshold and this
can be very beneficial in a multi-processor environment with
multiple compilation threads.

In the context of trace compilation and binary translation,
Böhm et al. [3] have also studied using a priority compilation
queue and its impact on overall runtime, especially when us-
ing a low compilation threshold. Their approach orders com-
pilation of traces based on their recency and frequency. Since
the compilation threshold directly affects the amount of time
that is spent compiling, they use an adaptive threshold based
on the current length of the compilation queue. Their imple-
mentation also uses multiple compiler threads. The result of
their study shows that ordering of compilations has a direct
impact on the overall runtime of applications.

Further stressing the importance of these studies, Nag-
purkar et al. [11] has shown that bursts of compilations do
not only happen at startup but also when the application en-
ters a new phase of its execution.

On the subject of graph caching, we could not find any
related work in terms of goal or scope.

7. Future Work
The algorithm for measuring the hotness of methods pre-
sented in this paper uses a relatively simple invocation
counter threshold to detect hot methods. Although this is
the technique used by most VMs, it would be interesting to
see how the hotness measurement interacts with other means
to detect hot methods, e.g., stack sampling.

Further work in integrating the two optimizations pre-
sented in this paper could, for example, let the presence of
an inline method’s graph in the cache influence the decision
if the method should be inlined or not.



While they are only briefly mentioned in this paper, the
effects of the meta-circularity on the compilation queue sys-
tem need to be studied in more detail.

Graph caching reduces the time required to compile
methods, which in turn lowers the CPU load generated by
the compiler given a specific set of methods to be compiled.
The effects of this reduced CPU load will likely be very
important in systems that are saturating most of their CPU
cores. This should be studied in more detail.

8. Conclusions
While most compiler optimizations are targeted at the peak
performance of applications, startup performance is impor-
tant as well, for example in interactive applications or appli-
cations that frequently generate new code.

We have shown that compilation queuing and graph
caching optimizations significantly increase the startup per-
formance of Java applications, as measured by the first run
performance of the DaCapo benchmark. Both the compila-
tion queuing and the graph caching contribute to this im-
provement.

Our detailed measurements have shown that, while the
effect of our improvements differ from benchmark to bench-
mark, they never have a negative influence on performance.
This means that they can be enabled, without causing regres-
sions on some benchmarks.

Lastly, the Graal VM proved to be an ideal vehicle for
our experiments, since its compiler is written in Java, and
therefore easy to modify. Only a small portion of the imple-
mentation had to be written outside of Java code. Also, the
Graal VM is based on the high-performance HotSpotTM VM,
which makes the results of our measurements applicable to
all compilers running on the HotSpotTM VM.
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