
Self-Optimizing AST Interpreters

Thomas Würthinger
∗

Andreas Wöß
†

Lukas Stadler
†

Gilles Duboscq
†

Doug Simon
∗

Christian Wimmer
∗

∗
Oracle Labs

†
Institute for System Software, Johannes Kepler University Linz, Austria

thomas.wuerthinger@oracle.com woess@ssw.jku.at stadler@ssw.jku.at duboscq@ssw.jku.at
doug.simon@oracle.com christian.wimmer@oracle.com

Abstract
An abstract syntax tree (AST) interpreter is a simple and natural
way to implement a programming language. However, it is also
considered the slowest approach because of the high overhead of
virtual method dispatch. Language implementers therefore define
bytecodes to speed up interpretation, at the cost of introducing in-
flexible and hard to maintain bytecode formats. We present a novel
approach to implementing AST interpreters in which the AST is
modified during interpretation to incorporate type feedback. This
tree rewriting is a general and powerful mechanism to optimize
many constructs common in dynamic programming languages. Our
system is implemented in JavaTM and uses the static typing and
primitive data types of Java elegantly to avoid the cost of boxed
representations of primitive values in dynamic programming lan-
guages.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors—Run-time environments, Optimization

General Terms Algorithms, Languages, Performance

Keywords Java, JavaScript, dynamic languages, virtual machine,
language implementation, optimization

1. Introduction
When designing and implementing a new programming language,
the first and easiest choice is to implement an abstract syntax tree
(AST) interpreter. The interpreter is often embedded in a virtual
machine (VM) that provides other services such as memory man-
agement. Parsers for context-free grammars process source code in
a tree-like fashion, so creating an AST feels natural and can even
be automated. Making an AST executable, i.e., writing an AST in-
terpreter, just requires adding an execute method to every AST
node.

A common argument against AST interpreters is performance:
calling the execute method for every node requires a virtual
method dispatch that is costly, and call sites within the execute
methods are highly polymorphic and therefore difficult to opti-
mize. For this reason, language implementers define bytecodes
to speed up interpretation. Bytecode interpreters are well under-
stood, and many variants with varying dispatch costs have been

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

DLS’12, October 22, 2012, Tucson, Arizona, USA.
Copyright c© 2012 ACM 978-1-4503-1564-7/12/10. . . $10.00

studied [9, 22]. Bytecodes are a virtual instruction set, i.e, they
can be defined freely by language implementers without worrying
about hardware constraints. There are two different strategies when
defining bytecodes. We believe that both are cumbersome when
implementing a new language:

• Language-independent bytecodes aim to provide an instruction
set that is suitable for many languages. JavaTM bytecodes [17],
originally designed primarily for the Java programming lan-
guage, are now used for many languages. The Common Inter-
mediate Language (CIL) [8], which is used by the .NET system,
was specifically designed for multiple languages. Language-
independent bytecodes provide only general instructions whose
semantics do not match the language semantics exactly. Long
bytecode sequences are potentially required to achieve the de-
sired language behavior. For example, Java bytecodes are stati-
cally typed, so compiling dynamically typed JavaScript requires
frequent type checks. A simple addition in JavaScript requires
checking whether the operands are numbers, strings, or arbi-
trary objects, which all require different handling. Therefore,
implementations of JavaScript that run on a Java VM often call
a method for a seemingly simple addition.

• Language-specific bytecodes are usually used internally by a
VM, often even without a clearly defined specification. They
closely resemble the semantics of the programming language,
so little can be reused from existing language implementa-
tions when implementing a new language. When the lan-
guage evolves, the bytecodes also have to evolve. This makes
language-specific bytecodes cumbersome to define and main-
tain.

In any case, bytecodes are difficult to modify once they are
emitted. Exploiting profiling information, such as types that were
observed during execution, is not only useful for just-in-time (JIT)
compilers but can also improve the performance of interpreters.
However, the compact binary encoding of bytecodes makes this
difficult. For example, to replace one generic bytecode (a call to
a type-agnostic addition method) with a short sequence of type-
specialized bytecodes (a few type guards followed by an integer
addition bytecode) requires adjusting offsets in branch instructions
that jump over the replaced code.

ASTs are more malleable than bytecodes. It is possible to incor-
porate profiling information immediately after it is discovered, by
rewriting the AST. For example, a tree node for a type-agnostic ad-
dition can be replaced with a specialized integer addition node after
the first execution of the addition reveals that the operands were in-
tegers. This is based on the observation that types are mostly stable,
even in dynamically typed languages.

In this paper, we show that while naive interpretation of an
AST is slower compared to bytecodes, use of profiling and AST

73

Guest VM written in Java

Host VM written in C++

Guest Language Application written in JavaScript

OS

JavaScript VM

Java VM

Figure 1. System structure of our guest VM on top of a host VM.

rewriting allow an AST interpreter to achieve speeds comparable
to the speed achievable with language-independent bytecodes. We
use Java and the Java VM for our implementation, and JavaScript
as the interpreted language. However, we are more interested in
the general concepts than in the specifics of JavaScript, therefore
our prototype does not implement the full language semantics of
JavaScript. While we believe that our rewritten type-specialized
ASTs are excellent input for a JIT compiler, we leave a detailed
investigation of this for future work (see Section 8). In summary,
this paper contributes the following:

• The definition of a simple yet efficient AST-interpreter-only
execution of a guest language on top of an existing statically
typed VM.

• Tree rewriting as a way to optimize and type-specialize AST
interpreters at run time.

• An evaluation showing that our AST interpreter achieves per-
formance similar to other, more complicated, implementations
that generate language-independent bytecodes.

2. System Structure
The rise of dynamic languages has led to a plethora of new VMs,
since a completely new VM is typically developed for every new
language. VMs are still mostly monolithic pieces of software. They
are developed in C or C++, the languages that they aim to replace.
VMs offer many benefits for applications running on top of them,
but they mostly do not utilize these benefits for themselves. In
contrast, we aim for a layered approach where a guest VM is
running on top of a host VM. The guest language is the language
that we want to define and write our application in, while the host
language is the language that we write our guest VM in, i.e., the
language that the host VM executes. For our examples, the guest
language is JavaScript and the host language is Java, i.e., we have a
JavaScript VM implemented in Java that runs on top of a Java VM.
Figure 1 summarizes our system structure.

This layered approach has several advantages that simplify the
implementation of a guest language. The host VM provides many
services such as automatic memory management, exception han-
dling, threads, synchronization primitives, and a well-defined mem-
ory model that can be leveraged by the guest VM. It is not neces-
sary to implement a complete VM, allowing the language designer
to focus on the execution semantics of the language. The guest VM
is completely implemented in the high-level host language (in our
case Java) and not in a low-level language such as C or C++. The
host VM abstracts platform and architecture specific details, so the
guest language implementation is automatically portable: our pure-
Java implementation of JavaScript runs unmodified on any archi-
tecture and operating system where Java is supported. The wide
availability of free high quality tools (e.g., Eclipse, NetBeans) fur-
ther extend the benefits of developing in Java.

Everything in our guest VM is written in Java and expressed
using Java concepts. The language parser as well as the AST in-

terpreter with its execute methods is Java code that only accesses
normal Java objects. This requires that guest language objects and
guest language metadata are modeled as Java objects. Addition-
ally, interpreter data structures such as stack frames are Java ob-
jects. This approach completely avoids Java bytecode generation.
We do not generate Java classes on-the-fly to represent guest lan-
guage classes, and we do not generate Java bytecodes for guest
language methods.

This approach also has some constraints. First, we are limited
to the Java object model and memory model, and to the primi-
tive types offered by Java. For example, we cannot employ tagged
pointers, a common method to overlay primitive values and refer-
ences. This is not a problem because we specialize the AST for
types, i.e., we can distinguish between primitive values and refer-
ences at the AST level. Only in rare cases do we have to box prim-
itive values into objects so that we can store them as references.

Second, our native interface is limited to the Java Native Inter-
face (JNI) since this is the only native interface offered by a Java
VM. JNI is well specified and completely hides VM implementa-
tion details from native code. Therefore, native interfaces of guest
languages that expose VM details are difficult to implement. We
argue that this is a flaw in the guest language design and should be
addressed by the language designer. A native interface that exposes
VM internals not only prevents a language implementation in Java,
but any new implementation of the language.

3. AST Interpretation
Implementing an AST interpreter for a language is a simple and
natural way of describing the semantics of the language. Every
operation in the language is encoded in an AST node. A node is
responsible for executing its associated operation and returning a
result value (if non-void). The execution of a method is done by
executing its root AST node. A frame object allows the nodes
to access local variables as well as other contextual information
necessary for execution, e.g., access to the caller frame.

We model AST nodes in the Java programming language as
shown in Figure 2. There is a common abstract node base class
with a method for executing the node. A Java object representing
the execution frame is a parameter to that method. The frame itself
contains an Object[] array with the values of the local variables.
All values of the language are represented as Java objects, therefore
the result value of the execute method is of type Object. Every
node contains a pointer to its parent node in the AST. This allows
for a fast replacement of one node with another node.

abstract class Node {
// Executes the operation encoded by this
// node and returns the result.
public abstract Object execute(Frame f);

// Link to the parent node and utility to
// replace a node in the AST.
private Node parent;
protected void replace(Node newNode);

}

Figure 2. Definition of the AST node base class.

The control structures of the language are generally imple-
mented using Java control structures. Non-local returns, i.e., con-
trol flow from a deeply nested node to an outer node in the AST,
are modeled using exceptions. Figure 3 shows how a while loop
is implemented. The Java while construct is used for the loop.
A ContinueException and a BreakException allow the nodes
that represent the continue or break statements inside the body of
the while loop to continue or break the loop.

74

class WhileNode extends Node {
protected Node condition;
protected Node body;

public Object execute(Frame frame) {
try {
while (condition.execute(frame)) {

try {
body.execute(frame);

} catch (ContinueException ex) {
// Continuing in the loop.

}
}

} catch (BreakException ex) {
// Breaking out of the loop.

}
return null;

}
}

Figure 3. Implementation of a while node.

4. Tree Rewriting
The ability to replace one node with another is a key aspect of
our system. It enables us to improve the executed AST at run
time by replacing a node with a more specialized node. Based on
profiling feedback from the previous and current input operands,
a node is replaced with a specialized node that can perform the
operation for these operands faster, but cannot handle all cases.
This means that the specialized node makes assumptions about
its operands. We optimistically assume that the assumptions hold
for future executions. The typical implementation of the execute
method of a node checks that any assumptions still hold and then
performs its operation. If the assumptions do not hold, the node
replaces itself with a node that can handle the more generic case.
The following subsections describe practical examples where we
use this replacement technique.

4.1 Operation Specialization
Figure 4 gives an example of a JavaScript function that adds two
values. Depending on the actual type of a and b, the operation
performed here can vary between a simple numeric add (integer
or double), a string concatenation, or a call to custom JavaScript
conversion methods. A static analysis in the context of JavaScript
is problematic given that real-world programs rarely allow for a
closed world analysis. Even if it could be performed, it is highly un-
likely to pay for itself with sufficiently faster interpretation. There-
fore, the interpreter must be capable of handling all possible cases.

function add(a, b) {
return a + b;

}

Figure 4. JavaScript example.

Instead of only implementing a single node whose execute
method handles all cases, we split the implementation of the op-
eration into several different nodes with transitions between them.
Each of the nodes handles a subset of the aforementioned cases and
includes a check on its inputs. If the inputs are not of the predicted
type, we replace the node with a different node that can handle the
new case appropriately. The transition between the different nodes
is unidirectional. The different node classes form a lattice where
the bottom node is capable of handling all cases. However, this big
and complex method is rarely executed.

Uninitialized

Integer

DoubleString

Generic

Figure 5. Transitions between different types of add nodes.

In the case of the plus operator in the example, we have five
different node types. Figure 5 shows the lattice with the possible
type transitions. The top node (Uninitialized) is the initial state af-
ter parsing where no type information is available. This node has no
functional implementation, so a rewrite to another node is manda-
tory for the first execution. The node integer is the desired spe-
cialization target because on all current architectures integer op-
erations can be performed faster than floating point computations.
Even though the JavaScript language specification does not know
an integer type, we can transparently insert it into the lattice for
optimization. As long as both arguments are integer numbers and
the addition does not overflow, we can use this fast path; otherwise,
we convert to the double node. The string node handles the case
of string concatenation. The generic node is the only node that can
handle custom JavaScript conversion methods. While this is a pow-
erful language concept that allows the addition of any two objects,
it is a rare case that does not need to be optimized.

The actual number of different node types for an operation and
their connection depends heavily on the semantics of the imple-
mented language and its common usage patterns. There are two
notable properties in this system:

Correctness: The operation can never be in a wrong state. Every
state can handle every possible input corner case by moving
to another state. This means that we can at any point in time
choose to undo a specialization by replacing the node with a
more generic version.

Finiteness: There are no loops in the lattice, thus the number of
transitions is finite and there cannot be an endless loop of state
transitions. This is important because a state transition implies
a run-time overhead and we want the AST to stabilize during
the execution of a program.

4.2 Type Decision Chains
The AST rewrite principle can be extended to form type decision
chains. A type decision chain is a variation of a polymorphic inline
cache [15] implemented via AST node chaining instead of a jump
table in generated code. Type decision chains can be used to opti-
mize JavaScript property accesses as well as virtual method calls.
In this context, a type is expanded to mean the set of properties and
methods defined for an object. This is analogous to the use of maps
in Self [6].

Figure 6 shows a series of AST transformations reflecting the
construction of a type decision chain. Similar to the operation spe-
cialization described in Section 4.1, the AST contains an uninitial-
ized node in the beginning. This uninitialized node gets the con-
crete type of the input(s) on which it should perform the opera-
tion, e.g., property access or method call. With this concrete type,
it creates a specialized AST node that is capable of performing
the operation for exactly this type. Guest language types are rep-
resented as Java objects, so the type check is a simple object iden-
tity comparison. If the type does not match, the specialized AST
node dispatches to a subsequent node. This way, the different con-
crete types that occur at a polymorphic site are encoded in the state

75

Uninitialized Type=#1

Uninitialized

Type=#1

Uninitialized

Type=#2 Type=#2

Uninitialized

Type=#3

Type=#1 Generic

Figure 6. Transformations of the AST for a polymorphic operation.

of the AST. If the number of different types exceeds a certain limit,
we declare the call site megamorphic and replace the decision chain
with a generic implementation of the operation. Alternately, we can
choose to place the generic node at the end of the chain if it is still
beneficial to have the specialized versions for the current types in
the chain. Finally, at any point in time we can try to re-profile the
chain by replacing it with an uninitialized node again.

Decision chains can potentially form trees. This is beneficial if
the operation performed for a specific type again needs a polymor-
phic dispatch. Currently, we use this for efficient implementation
of JavaScript’s prototype mechanism. Here, the type of the value
decides whether the prototype must be accessed for a specific prop-
erty or not. In case the prototype must be accessed, there is an ad-
ditional decision chain for different prototype types.

5. Dynamic Data Type Specialization
The main performance problem of the system described so far is
the boxing necessary to allow one value to hold both primitive
values as well as references. A common solution to this problem
is to use value tagging. We present here an alternative approach
that we believe is better in terms of performance and simplicity.

5.1 Boxing
Java VMs, and most VMs in general, differentiate between prim-
itive types and reference types. Primitive types directly represent
values of varying ranges (integers, doubles, etc.), while reference
types are pointers to data structures within the application’s heap.
The differentiation between primitive and reference types is impor-
tant for the safety and soundness of the system (no pointer arith-
metic), and only reference types need to be visible to garbage col-
lection.

In the Java language, the static type of each value defines
whether it is of primitive or reference type, so that the storage type
is known beforehand. In JavaScript, however, the type of a value is
not known beforehand, so that the system needs to be prepared to
process both primitive and reference types.

The most common solution is to allocate storage of reference
type, and whenever a primitive value needs to be stored it is
wrapped into a small boxing object. This boxing object has ex-
actly one field of the primitive type and is used as a proxy that
allows the primitive value to be stored in a reference storage.

5.2 Tagging
Boxing imposes considerable overhead, because a new boxing ob-
ject is created each time a primitive value needs to be stored. To
avoid this, VMs sometimes employ tagging, which uses a bit-level
flag to tell if a stored machine word is a primitive or a reference
value. While this allows the system to store primitive values with-
out boxing them, this has several disadvantages:

• While the least significant bit of object references is not needed
when objects are aligned, the primitive types do not contain
unneeded bits that can be used for object tagging.

• Each time a value is loaded, the system needs to check whether
it is a primitive or reference value and remove the flag bits.

• Each time a value is stored, the system needs to set the accord-
ing flag bits.

5.3 Return Type Specialization
The return value of the execute method is declared as being
an arbitrary Java Object value (see Figure 2). The result of any
node has to be boxed even when the node (e.g., an integer add
node) knows that it can only produce integer values. We want
to avoid that and therefore introduce specialized execute methods
(e.g., executeInt) as shown in Figure 7. The semantics of those
methods are defined in the following way. The caller specifies the
primitive type that it desires to get from the callee. If the callee
can deliver its result value in that form, it simply returns. If the
callee cannot deliver its result value in that form, it throws an
UnexpectedResultException containing the boxed version of
the result. The caller is forced to handle such an exception and act
appropriately, e.g., rewrite itself to a version that can handle this
type of result.

abstract class Node {
public abstract Object execute(Frame f);
public abstract int executeInt(Frame f)

throws UnexpectedResultException;
public abstract double executeDouble(Frame f)

throws UnexpectedResultException;
// ...

}

Figure 7. Return type specialized execute methods.

Figure 8 shows how a specialized node such as a JavaScript
integer add is programmed against this modified framework. The
operation expects that both of its inputs return their values as
integers. If one of them fails, the node rewrites itself and propagates
the unexpected result exception to its caller. The code shown in the
figure may seem complex, but in the normal case, the catch blocks
are never executed. The actual operations performed are getting the
values from the left and right operand and performing an integer
addition. There is no boxing, no unboxing, and also no type check
involved. In the normal execution path, the inputs are guaranteed to
be of the appropriate type.

Note that even if one of the calls to executeInt throws an
UnexpectedResultException, the associated node has already
been evaluated. This implies that any side effects have already
occurred and the node that replaces the IntegerAddNode needs

76

class IntegerAddNode extends BinaryNode {
public int executeInt(Frame frame)

throws UnexpectedResultException {
int a;
try {
a = left.executeInt(frame);

} catch (UnexpectedResultException ex) {
// Rewrite this node and execute the rewritten
// node using already evaluated left.

}
int b;
try {
b = right.executeInt(frame);

} catch (UnexpectedResultException ex) {
// Rewrite this node and execute the rewritten
// node using already evaluated left and right.

}
// Overflow check omitted for simplicity.
return a + b;

}
}

Figure 8. Integer add node using return type specialization.

to use the boxed result from the UnexpectedResultException
the first time it is executed. In case of the binary IntegerAddNode
the system needs to be aware if only left or both left and right
have been executed, because in the first case it needs to use the
cached result for left and in the second case it needs to use the
cached results for both left and right.

Figure 9 shows how the integer add node would be programmed
without type specialization to highlight the difference. In contrast
to the code in Figure 8 with return type specialization, there are two
type checks, two unboxings, and one boxing in the fastest path.

5.4 Local Variable Specialization
We apply specialization not only to the result values of nodes,
but also to local variables. This mechanism is only interesting
for dynamic languages where the type of a local variable is not
specified. For JavaScript, we distinguish four different states for
local variables: uninitialized, integer, double, object. As with the
type lattice for node transitions, local variables go through the same
possible transitions during their lifetime. Unlike normal nodes,
when the type of a local variable changes, every occurrence of
the local variable in the AST must be changed atomically. Such
a change can only happen when there is a value of a different type
being stored into a local variable. The assignment of a value to
a local variable is itself specialized. This means that if we have
an assignment specialized as an integer assignment of a value to a
local variable that is specialized as integer, we can avoid any kind of
boxing or unboxing. The assignment calls the executeInt method
of the node representing the value that should be assigned. Then it
stores this integer directly into the frame of the method.

In order to allow primitive and object values for local variables,
we use a Frame object with an Object[] field and a long[]
field for the local variables in the frame. If the value is primitive
(e.g., integer or double), then we directly1 store the value into the
long[], otherwise it is stored in the Object[].

In contrast to a Java VM’s mechanism for finding references in
native interpreter frames, the references in AST frames are simply
the values in the Object[] field.

1 We use utilities such as Double.doubleToRawLongBits() to ensure no
value conversion occurs when storing a value as a long.

class IntegerAddNode extends BinaryNode {
public Object execute(Frame frame) {

Object a = left.execute(frame);
if (!(a instanceof Integer)) {
// Rewrite this node and execute the rewritten
// node using already evaluated left.

}
Object b = right.execute(frame);
if (!(b instanceof Integer)) {
// Rewrite this node and execute the rewritten
// node using already evaluated left and right.

}
// Overflow check omitted for simplicity.
return (Integer) a + (Integer) b;

}
}

Figure 9. Integer add node without return type specialization.

Local variable specialization has some implications in case of
recursive method calls. If there is a specialization in a function that
has an activation somewhere up on the stack, we need to ensure
that upon return to that activation we convert the value of the
local variable in the frame for this activation from the previously
assumed type to the new type. This conversion is guaranteed to be
possible since the types only change according to the type lattice
(see for example Figure 5), i.e, types change from more specific to
more generic types.

5.5 Field Specialization
For dynamic languages without classes, we use a concept similar
to maps in Self [6]. Every object has a pointer to an object array
that holds the fields of the object. Additionally, there is a pointer to
the map of the object: a Java object that describes the layout of this
array, i.e., which field is at which index. A store to an unknown field
triggers a map transition, where the map of an object changes. This
map is used on our polymorphic chains for efficient implementation
of polymorphic field accesses (see Section 4.2).

In order to avoid boxing of values when storing to fields, we
propose type specialization of the fields. This means that the map
not only contains the information at which index a field is stored,
but also the primitive type of the field. An object of the dynamic
language can contain an additional long[] array for those values
or also potentially a few long Java fields that serve as placeholders
for primitive data. A store to a known field that would change the
type of the field triggers a map change.

The duplication of the Object[] and the long[] array can
be avoided if the GC is aware of the layout description for guest
language objects. However, the overhead is not high for common
JavaScript programs. The benefit of avoiding boxing outweighs
the overhead of a second array. It is possible to store a fixed
number of primitive and reference values in the object itself, which
eliminates the need for the extended arrays in most cases (we
have not implemented this optimization yet, so for the performance
numbers in Section 7.1 all fields are stored in the arrays).

6. Method Inlining
Figure 10 shows an extended version of the JavaScript program
with the add function. The function is now called twice: the first
time the parameters are always numbers, and the second time the
parameters are always strings. When applying the operation spe-
cialization described in Section 4.1, we end up with a generic ver-
sion of the add operation. This results in a performance loss, pe-
nalizing programmers who factor out common functionality into

77

function foo() {
return add(1, 2) + add("hello", "world");

}

function add(a, b) {
return a + b;

}

Figure 10. Extended JavaScript example.

helper methods. That is, applying recommended software engineer-
ing practices can decrease the performance of the program.

In comparison to dynamic languages, the static typing of Java
somewhat mitigates the need for run-time type feedback in terms of
achieving good performance. However, use of type profiling is still
a major issue for non-primitive types in Java as the information
about polymorphic call sites gets less specific and branch proba-
bility accuracy decreases as more inlining is applied by the opti-
mizing compiler. Some abstractions used in Java libraries can have
their performance severely impacted by this issue. For example, a
foreach method on a Java collection object that takes a closure as
its parameter has a megamorphic call site at the point where the clo-
sure is called. This megamorphic call site contains the type of every
closure ever given to the foreach method. Inlining the foreach
method into its call site greatly increases the chance that the closure
call becomes less polymorphic and may even be monomorphic.

We believe that the core of the problem is the gap between the
inlining performed by the optimizing compiler and the way the
interpreter executes the program. Therefore, we propose to perform
function inlining on the AST level. If we find out that a particular
call site (not a method) is hot, we duplicate the AST of the called
method and put the copy back into the uninitialized state. This way,
the AST of that method is specialized based on its usage patterns
from the call site. This allows us to gather context-specific profiling
feedback. Figure 11 illustrates this method inlining process, where
the big circles represent methods, and the small circles represent
AST nodes.

Figure 12 shows the evolution of the AST (simplified) when ex-
ecuting the JavaScript program from Figure 10. In the first version
of the AST, the connection between the call sites and the method
add is through function calls (stage 1). The main difference be-
tween this connection and a normal connection between two AST
nodes is that the former does not have a parent pointer and also that
there may be multiple parents for a function node (in this example
two). The nodes that implement a specific method always form a
tree whereas the connections between trees form a graph, i.e., the
call graph. Cycles in the graph caused by recursion can be dealt
with by inlining heuristics, e.g., stop inlining once the AST reaches
a certain number of nodes.

There are two plus operations; both are currently in the unini-
tialized state. After execution of the first add function call, the plus
operation in the add function moves to the integer state (stage 2).
After the second add function call, the plus operation moves to the
generic state, because the type of the inputs does not match the pre-
dicted integer type (stage 3). The plus operation in the foo function
also moves from uninitialized to generic: we are adding an integer
and a string, therefore we cannot specialize (stage 4).

After a predefined number of executions of the add call site, we
recognize it is hot. In that case, we inline the called method into the
caller. The add operation node gets duplicated and then replaced
by the uninitialized version of that node (stage 5). During the first
execution of that node, it gets specialized to be an integer node
(stage 6).

When the second call site gets hot, we inline this call site too
(stage 7). After the first invocation, the add operation that was

Figure 11. Method inlining in the dynamic call graph.

duplicated during this inlining, is specialized to string (stage 8). We
can now execute both invocations of the add method specialized on
parameter types, which results in a performance gain.

The important thing to note here is that we can apply this pro-
gram specialization without any global analysis. Using only greedy
and simple algorithms that operate locally on a node, dynamic spe-
cialization of the program achieves faster operations.

7. Evaluation
We implemented an AST rewriting interpreter for JavaScript in
Java. Our implementation is pure Java source code that does not
need any native code, machine code generation, or Java bytecode
generation. The focus is on showing the concept and the potential
of AST rewriting rather than a complete JavaScript VM. We have
not yet implemented some features of JavaScript, such as eval()
or regular expressions (see Section 8), but otherwise we adhere to
the semantics of JavaScript. We use the V8 benchmark suite [12]
for evaluation. Two benchmarks are excluded: RegExp (a regular
expression benchmark) and EarleyBoyer do not yet run on our
implementation.

7.1 Performance
To show the performance of our AST interpreter and the impact of
AST rewriting, we compare the following configurations:

• AST interpreter with tree rewriting: Our AST interpreter with
all optimizations described in the previous sections enabled.

• AST interpreter without tree rewriting: Our AST interpreter
with tree rewriting disabled completely, i.e., the AST is never
changed during execution. Still, the AST interpreter is imple-
mented carefully to achieve the best possible performance, and
it uses the same the structures to represent JavaScript objects
and arrays.

• AST interpreter rewriting only property access: Our AST inter-
preter with tree rewriting only enabled for type decision chains
(see Section 4.2).

• Rhino with Java bytecode generation: The Rhino JavaScript
VM [18] version 1.7R2 with bytecode generation enabled. Sim-
ilar to our system, Rhino is a JavaScript VM written in Java. It
uses an AST interpreter as the first level of execution, and then
translates frequently executed JavaScript methods to Java byte-
codes. These bytecodes are then translated to optimized native
code by the JIT compiler of the Java VM.

• Rhino interpreter only The Rhino JavaScript VM with bytecode
generation disabled, i.e., using their AST interpreter only.

We run all configurations on the 64-bit Java HotSpot server VM
of the JDK 7 update 2. The JIT compiler of the VM translates
the AST interpreter methods to optimized machine code. Thereby,

78

U+

U+

Call Call

add

foo

I+

U+

Call Call

add

foo

G+

U+

Call Call

add

foo

G+

G+

Call Call

add

foo

G+

G+

Inline Call

add

foo

U+

G+

G+

Inline Call

add

foo

I+

G+

Inline

foo

I+

Inline

U+

G+

Inline

foo

I+

Inline

S+

1 2 3 4

5 6 7 8

Legend:

U+

I+

S+

G+

uninitialized add

integer add

string add

generic add

Figure 12. AST evolution for the extended JavaScript add example from Figure 10.

it performs aggressive optimizations such as global code motion
and scheduling, graph-coloring register allocation, array-bounds-
check elimination, loop invariant code motion, loop unrolling, and
escape analysis. Additionally, it uses profiling information to, e.g.,
inline the most frequently called method of a polymorphic call site.
This helps to optimize a few call sites of the execute() AST
interpreter method, but still a lot of virtual method calls remain.
When the Rhino VM generates Java bytecodes, these bytecodes
are optimized the same way by the Java HotSpot VM. However,
complicated bytecode sequences have to be emitted to simulate
JavaScript semantics with typed Java bytecodes, leading to sub-
optimal machine code being generated.

The benchmarks were executed on a two socket, dual core AMD
Opteron 2214 with 2.2 GHz, a total number of 4 cores, and 4 GB
main memory. The OS is Oracle Enterprise Linux, version 2.6.18.
The reported numbers are the average of 10 executions.

Figure 13 shows the performance results. The numbers are
speedups relative to our AST interpreter with all optimizations en-
abled, i.e., higher means better. Tree rewriting is an important opti-
mization that greatly improves performance of the interpreter. For
example, it leads to an 11x speedup for the DeltaBlue benchmark.
The most important rewriting is the optimization of property and
array accesses using type decision chains. This optimization spec-
ulates that types are stable, i.e., that objects of the same shape are
used when performing a property lookup repeatedly even when the
language itself is dynamically typed. This is a well-known obser-
vation that was already used to optimize languages such as Self [6].
In our tree rewriting interpreter, this optimization fits naturally into
the general rewriting framework.

Rhino in its interpreter-only mode is in general much slower
than our non-rewriting interpreter. This shows that our careful im-
plementation style of the interpreter, combined with a good object
model to represent JavaScript objects, can make a difference and
lead to a nearly 2x speedup. With all of our implementations en-
abled, our interpreter is nearly 4x faster than the Rhino interpreter.
This speed comes close to the speed of Rhino when generating Java
bytecodes, making the fully optimized configuration of Rhino only
40% faster than our interpreter.

Interpreters are much slower than the code generated by op-
timizing JIT compilers. To show the performance possibilities
for JavaScript, we compare our interpreter to the V8 JavaScript
VM [11], one of the best performing JavaScript VMs with a JIT
compiler developed and optimized solely for JavaScript. In com-
parison to our AST interpreter with tree rewriting, the V8 VM is
6x (benchmark Splay) to 62x (benchmark Richards) faster, with a
mean of 28x. The future work in Section 8 shows how our rewritten
AST can be the input for an optimizing compiler.

The results show that a carefully implemented AST interpreter
with AST rewriting comes close in performance to much more
complicated systems generating Java bytecodes, which are com-
piled to optimized native code by the Java VM. Performing high-
level and dynamic language specific optimizations on the AST has
more impact than the low-level optimizations that the Java VM can
perform on Java bytecodes. The most important tree rewriting op-
timization, type decision chains, is difficult to implement in Rhino
with bytecode generation because bytecodes cannot be rewritten
once they are generated, i.e., it is not possible to speculate on type
stability. Therefore, Rhino’s bytecode generation would not profit
from, e.g., our choice of object representation. In summary, gener-
ating Java bytecodes makes the implementation much more com-
plex, but does not lead to a significant performance benefit.

7.2 Rewriting
Figure 14 shows how many nodes of certain kinds of operations
are rewritten. We report the number of nodes that are rewritten
at least once (columns ‘>0’), as well as the number of nodes
that are rewritten more than once(columns ‘>1’). This shows that
most nodes are rewritten only once, but then remain stable and
unchanged for the rest of the execution. This implies that the types
are stable, i.e., an arithmetic node that is rewritten once to type
Integer often remains at this type. The first two rows are arithmetic
operations and comparisons, while the following three rows are
variable assignments and loads. Loads from global variables are
accesses from the JavaScript global object, which we rewrite to
special nodes so that we can optimize them more than normal
property accesses. The rows for property access and array access

79

10
0%

10
0%

10
0%

10
0%

10
0%

10
0%

10
0%

61
%

9%

77
%

36
%

85
% 92

%

48
%

84
% 88
%

80
% 95

%

94
%

95
%

89
%

21
0%

12
3%

17
7%

16
1%

80
%

12
9% 14

0%

35
%

28
%

19
% 37

%

15
% 33

%

27
%

0%

50%

100%

150%

200%

250%

Richards DeltaBlue Crypto RayTrace Splay NavierStokes Mean

AST interpreter with tree rewriting
AST interpreter without tree rewriting
AST interpreter rewriting only property access
Rhino with Java bytecode generation
Rhino interpreter only

Figure 13. Performance impact of our AST rewriting, and comparison with the Rhino JavaScript VM (higher is better).

>0 >1 >0 >1 >0 >1 >0 >1 >0 >1 >0 >1
Binary Op 63 1 96 1 446 9 190 22 64 4 230 2
Unary Op 0 0 1 0 5 0 18 2 0 0 7 0
Assignment 217 0 286 1 769 0 287 8 155 1 253 0
Load Local Var 358 12 568 10 1600 25 737 40 340 14 842 8
Load Global Var 139 0 206 0 474 1 221 0 81 0 71 0
Property Access 390 2 897 3 829 0 912 3 338 0 126 0
Array Access 15 0 11 1 160 1 14 0 10 0 106 0
Method Inlinling 24 12 117 28 20 9 74 49 27 5 1 0

Richards DeltaBlue Crypto RayTrace Splay NavierStokes

Figure 14. Number of AST nodes that are rewritten (columns
‘>0’) and rewritten more than once (columns ‘>1’).

show the number of rewrites that occur for type decision chains.
Finally, the last row shows the number of methods that are inlined
at the AST level.

Figure 15 presents details about the type specialization for arith-
metic operations. The Static rows show the number of nodes for the
respective operation generated during parsing, i.e., the number of
operators in the source code. The remaining rows contain dynamic
execution counts. Every operation starts in the Uninitialized state
and is rewritten upon first execution. An Uninitialized count that
is lower than the corresponding Static count implies that some op-
erations are never executed (dead code). Unlike static analysis, we
waste no resources identifying the type of never executed opera-
tions.

Although JavaScript uses the double type to represent numbers
at the language level, it is possible to use integer operations as
long as no overflow occurs. The execution counts of the Integer
rows show that using integer arithmetic is a beneficial optimization:
3 out of our 6 benchmarks can be type-specialized to operate almost
exclusively on integer numbers. Integer arithmetic is much faster
than floating point arithmetic on all current architectures.

The Generic rows show operations that have mixed types. Our
current implementation reaches this state if the left input is integer
and the right input is double, or vice versa. Therefore, the execu-
tion counts of this state are high for some benchmarks. To avoid
reaching this state, we would have to insert explicit type conver-
sion nodes that convert one input from input to double and then
specialize the arithmetic operation to the type double.

Richards DeltaBlue Crypto RayTrace Splay NavierStokes
Addition
Static 30 25 163 96 23 113
Uninitialized 14 17 100 32 20 83
Integer 654,972 358,140 18,610,735 27,318 8,049 11,364,308
Double 0 0 857 4,802,357 39,306 89,660,148
Generic 1 38,526 1,998 14,848 892,155 1,622,590
Subtraction
Static 2 4 150 18 4 24
Uninitialized 2 5 107 12 4 23
Integer 127,999 29,820 3,848,603 2 821,437 197,905
Double 127 127 7 3,308,470 63 6,291,481
Generic 0 0 11 153,980 0 9,437,178
Multiply
Static 3 6 49 50 3 81
Uninitialized 3 6 32 42 3 67
Integer 0 318,333 12,429,155 55,060 0 5,001,179
Double 0 0 34 7,947,147 0 36,707,056
Generic 0 0 1,192 379,002 0 22,594,234
Divide
Static 4 5 12 15 4 7
Uninitialized 3 5 9 11 4 5
Integer 0 4,222 1 0 0 0
Double 0 0 220 82,431 13,119 126
Generic 1 1 24 1,297,978 1 1

Figure 15. Execution counts for arithmetic operations.

8. Future Work
Our prototype implementation is not yet a complete JavaScript VM,
since we focus on the concept and potential of AST rewriting rather
language completeness. Two parts missing are eval() and regular
expressions. The eval() statement takes a string as a parameter
and executes it as if it were source code inserted at this position.
Since the string can be constructed at run time, this allows dynamic
code generation. A recursive call of our parser and interpreter
would be a straightforward implementation of eval(). It parses
and executes the string from scratch at every execution, i.e., without
saving any type information that was collected by AST rewriting.
This approach would be sufficient if the repeated execution of a
specific eval() statement had a different string parameter every
time. However, studies have shown that eval() is misused by
many developers, e.g., by supplying a constant parameter [20].

80

Even for valid use cases of eval(), we expect that the input
parameter is stable in the same sense that types are stable: in most
cases, a limited amount of different strings is provided.

By combining the idea of type decision chains and method
inlining on the AST, we can aggressively optimize such use cases:

• When the eval() is executed the first time, the provided source
code string is parsed into an AST and executed. We assume
we will see this string again, so the tree is rewritten to a string
comparison that checks for equality.

• If the string comparison succeeds, the AST cached from the
previous execution is executed.

• If a different string is evaluated, the new string is parsed again,
and another string comparison node is appended.

• Up to a certain maximum number, the ASTs of strings are
cached. These trees are specialized and optimized by multiple
executions, so all the optimizations described in this paper are
also performed for dynamically generated source code.

• Only if too many different parameters are encountered, the
strings need to be parsed every time the eval() is called.

For regular expressions, we can use the regular expression li-
brary provided by the standard Java library, again assuming that
the regular expression itself is stable. This means we can cache one
or a few regular expressions to avoid parsing the regular expression
every time it is executed.

To achieve the best possible peak performance, frequently ex-
ecuted parts of an application have to be compiled to optimized
machine code. In such a mixed-mode execution system, the inter-
preter is the first level of execution, and JIT compiled code is the
second level. Our AST interpreter rewrites and specializes its input,
i.e., it collects profiling information during execution. It eliminates
the need for a separate profiling phase and allows flexible and lan-
guage specific profiling; compared to profiling generated bytecode
which can only benefit from the existing profiling implemented for
these bytecodes. Therefore, we believe that the rewritten ASTs are
the ideal input for a JIT compiler. However, we do not want to write
a JIT compiler for every language; instead, we want one compiler
that is language agnostic. We can achieve that by using partial eval-
uation: the execute() methods of a whole AST are inlined into
one compilation unit, thereby assuming that the tree is stable. This
compilation unit is then optimized by the JIT compiler. If there is
a control path that would change the AST, we remove it from the
compiled code and instead replace it with a runtime call that trig-
gers deoptimization [16], i.e., the optimized machine code is dis-
carded and execution continues in the AST interpreter. The AST
interpreter rewrites the tree, which can then be compiled and op-
timized again. This way, we are able to create optimized machine
code for an AST that only contains the fast path for every node.
An existing implementation of this partial evaluation is PyPy [21].
However, they do not rewrite the AST during interpretation, but
instead rely on a trace-based JIT compiler [2, 3] to exploit type
stability.

9. Related Work
Williams et al. applied type specialization to the Lua VM inter-
preter [23]. They use a dynamic intermediate representation (DIR)
that replaces the standard Lua bytecode. Each DIR node encodes
the opcode of a specialized instruction. Operations whose result
type can change are represented with a type-directed node that in-
cludes a table of target nodes, one entry per each of the 9 types
in Lua. The interpreter uses the result type of a node of such an
operation to find and dispatch to a type-specialized target node.
This is effectively a fixed-size polymorphic inline cache between

the specialized DIR nodes. The specialized operations avoid the
need for type checking the first input operand of instructions. It is
not clear if/how the technique avoids type checking subsequent in-
put operands. The DIR interpreter also propagates types through
calls and returns although does not support inlining. The DIR inter-
preter achieves an average speedup of 1.3x over the standard Lua
bytecode interpreter even though the dispatch overhead for DIR is
greater than that of bytecode dispatch.

As part of their survey on the design of efficient interpreters [9],
Ertl and Gregg offer advice on how to increase the efficiency of
an interpreter, especially taking into account the impact of vari-
ous branch prediction schemes have on indirect dispatch in an in-
terpreter. They advise writing a threaded code interpreter [1] and
combining common sequences of instructions into superinstruc-
tions [19]. Both of these enhancements significantly complicate the
design of the interpreter. In contrast, we believe that the simple, tree
rewriting AST interpreter we present can not only achieve reason-
able interpretation performance but can be used with a special form
of JIT compilation (see Section 8) to provide excellent overall pro-
gram performance.

Brunthaler implemented quickening for a Python bytecode in-
terpreter [4, 5]. Frequently executed bytecodes are re-written to
more specific, type-specialized versions. This introduces type feed-
back for, e.g., arithmetic operations, similar to our system. How-
ever, we argue that bytecodes are harder and less flexible to rewrite
because a bytecode sequence has to be overwritten with a new
sequence of the exact same length. This required Brunthaler to
change the original bytecode representation of the Python inter-
preter.

Our system works on the assumption that the value types in
a program are mostly stable, much like those of statically typed
languages. Gal et al. show with their trace based compiler for
JavaScript that this assumption is well founded [10]. In an attempt
to improve the type information available to a dynamic compiler,
Hackett et al. added a hybrid type analysis to the JaegerMonkey
JIT compiler used in Firefox [13]. Their analysis uses static type
inference backed by dynamic checks for cases not accounted for
by the static analysis. When such a check fails, the inferred type in-
formation is updated, and any code that is subsequently invalidated
must be immediately discarded and potentially recompiled (e.g., if
it is currently executing). This hybrid type analysis substantially
increases compile time (2.5x on the SunSpider benchmark) with
only a modest speedup factor of 1.27 on the same benchmark. In
our system, which already uses dynamic type feedback, such static
type analysis would be far too expensive and provide little or no
benefit.

The need for more context-sensitive inlining in a Java VM
supporting dynamic languages is highlighted by Click [7] and
Häubl [14]. Our use of AST inlining at hot call sites is designed to
address exactly this issue.

10. Conclusions
We have shown that through the use of profiling and AST rewriting,
an AST interpreter can achieve speeds comparable to language-
independent bytecodes. A significant advantage of such a design
is its simplicity in comparison to dynamic language systems that
use bytecode generation. Additionally, the layered structure of our
system allows us to develop the interpreter in pure Java, which
offers a whole raft of language and tooling advantages over lower
level languages such as C and C++. We believe that our system
provides a solid basis for providing overall excellent performance
due to the type information that can be made available to a JIT
compiler. Such a JIT compiler would use a special form of partial
evaluation by inlining all the execute() methods of a whole AST
into one compilation unit.

81

Acknowledgments
We thank all members of the Virtual Machine Research Group at
Oracle Labs, as well as the Institute for System Software at the Jo-
hannes Kepler University Linz, for their support and contributions.

Oracle and Java are registered trademarks of Oracle and/or
its affiliates. Other names may be trademarks of their respective
owners.

References
[1] J. R. Bell. Threaded code. Communications ACM, 16(6):370–372,

1973.

[2] C. F. Bolz, A. Cuni, M. Fijałkowski, and A. Rigo. Tracing the meta-
level: PyPy’s tracing JIT compiler. In Proceedings of the Work-
shop on the Implementation, Compilation, Optimization of Object-
Oriented Languages and Programming Systems, pages 18–25. ACM
Press, 2009. doi: 10.1145/1565824.1565827.

[3] C. F. Bolz, A. Cuni, M. Fijałkowski, M. Leuschel, S. Pedroni, and
A. Rigo. Runtime feedback in a meta-tracing JIT for efficient dy-
namic languages. In Proceedings of the Workshop on the Imple-
mentation, Compilation, Optimization of Object-Oriented Languages
and Programming Systems, pages 9:1–9:8. ACM Press, 2011. doi:
10.1145/2069172.2069181.

[4] S. Brunthaler. Efficient interpretation using quickening. In Proceed-
ings of the Dynamic Languages Symposium, pages 1–14. ACM Press,
2010. doi: 10.1145/1869631.1869633.

[5] S. Brunthaler. Inline caching meets quickening. In Proceedings of the
European Conference on Object-Oriented Programming, pages 429–
451. Springer-Verlag, 2010. doi: 10.1007/978-3-642-14107-2 21.

[6] C. Chambers, D. Ungar, and E. Lee. An efficient implementation of
SELF, a dynamically-typed object-oriented language based on proto-
types. In Proceedings of the ACM SIGPLAN Conference on Object-
Oriented Programming Systems, Languages, and Applications, pages
49–70. ACM Press, 1989. doi: 10.1145/74877.74884.

[7] C. Click. Fixing the inlining problem, 2011. URL http://www.
azulsystems.com/blog/cliff/2011-04-04-fixing-the-inlining-problem.

[8] ECMA. Standard ECMA-335: Common language infrastructure
(CLI), 2012. URL http://www.ecma-international.org/publications/
standards/Ecma-335.htm.

[9] M. A. Ertl and D. Gregg. The structure and performance of efficient
interpreters. Journal of Instruction-Level Parallelism, 5, 2003.

[10] A. Gal, B. Eich, M. Shaver, D. Anderson, D. Mandelin, M. R.
Haghighat, B. Kaplan, G. Hoare, B. Zbarsky, J. Orendorff, J. Ru-
derman, E. W. Smith, R. Reitmaier, M. Bebenita, M. Chang, and
M. Franz. Trace-based Just-in-Time Type Specialization for Dynamic
Languages. In Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation, pages 465–478.
ACM Press, 2009.

[11] Google. V8 JavaScript engine, 2012. URL http://code.google.com/p/
v8/.

[12] Google. V8 benchmark suite, 2012. URL http://v8.googlecode.com/
svn/data/benchmarks/current/run.html.

[13] B. Hackett and S. Guo. Fast and precise hybrid type inference for
JavaScript. In Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation, pages 239–250.
ACM Press, 2012. doi: 10.1145/2254064.2254094.

[14] C. Häubl, C. Wimmer, and H. Mössenböck. Evaluation of trace
inlining heuristics for Java. In Proceedings of the ACM Symposium
on Applied Computing, pages 1871–1876. ACM Press, 2012. doi:
10.1145/2245276.2232084.

[15] U. Hölzle, C. Chambers, and D. Ungar. Optimizing dynamically-typed
object-oriented languages with polymorphic inline caches. In Pro-
ceedings of the European Conference on Object-Oriented Program-
ming, pages 21–38. Springer-Verlag, 1991.

[16] U. Hölzle, C. Chambers, and D. Ungar. Debugging optimized code
with dynamic deoptimization. In Proceedings of the ACM SIGPLAN
Conference on Programming Language Design and Implementation,
pages 32–43. ACM Press, 1992. doi: 10.1145/143095.143114.

[17] T. Lindholm, F. Yellin, G. Bracha, and A. Buckley. The Java Virtual
Machine Specification, Java SE 7 Edition, 2012. URL http://docs.
oracle.com/javase/specs/jvms/se7/jvms7.pdf.

[18] Mozilla. Rhino JavaScript VM, 2012. URL http://www.mozilla.org/
rhino/.

[19] T. A. Proebsting. Optimizing an ANSI C interpreter with superopera-
tors. In Proceedings of the ACM SIGPLAN Symposium on Principles
of Programming Languages, pages 322–332. ACM Press, 1995. doi:
10.1145/199448.199526.

[20] G. Richards, C. Hammer, B. Burg, and J. Vitek. The eval that
men do: A large-scale study of the use of eval in JavaScript ap-
plications. In Proceedings of the European Conference on Object-
Oriented Programming, pages 52–78. Springer-Verlag, 2011. doi:
10.1007/978-3-642-22655-7 4.

[21] A. Rigo and S. Pedroni. PyPy’s approach to virtual machine con-
struction. In Companion to the ACM SIGPLAN Conference on Object
Oriented Programming Systems, Languages, and Applications, pages
944–953. ACM Press, 2006. doi: 10.1145/1176617.1176753.

[22] Y. Shi, K. Casey, M. A. Ertl, and D. Gregg. Virtual machine show-
down: Stack versus registers. ACM Transactions on Architecture and
Code Optimization, 4(4):2:1–2:36, Jan. 2008. doi: 10.1145/1328195.
1328197.

[23] K. Williams, J. McCandless, and D. Gregg. Dynamic interpretation
for dynamic scripting languages. In Proceedings of the International
Symposium on Code Generation and Optimization, pages 278–287.
ACM Press, 2010. doi: 10.1145/1772954.1772993.

82

